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Abstract 
 
The poleward propagation of zonal-mean zonal wind anomalies is a major but often neglected 

component of zonal-mean variability.  Poleward propagation is essential for understanding the 

response of the jet streams to global warming, in particular, why does the jet shift poleward in 

response to greenhouse gas forcing.  Traditionally, the study of zonal-mean zonal wind has 

focused on the annular mode, which is the leading EOF of zonal wind variability outside of the 

tropics.  Focusing on a single EOF, however, ignores the coupling between EOFs that are a 

prerequisite in the presence of propagation.  This narrow uncoupled EOF view has dominated 

studies quantifying the feedbacks between zonal-mean zonal wind anomalies and the eddy 

momentum fluxes that force them.  This study generalizes the analysis of the eddy-zonal flow 

feedbacks to multiple coupled EOFs.  In the process, we quantify the role of eddy-zonal flow 

feedbacks on zonal-mean zonal wind variability and persistence in the ERA-Interim reanalysis 

(1979-2017).  We find that the role of feedbacks on zonal-mean zonal wind variability is 

significantly larger than that found when assuming uncoupled EOFs. 
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1. Introduction 
	

Over the last half century, the study of the effects of eddies on the zonal-mean state of the 

atmosphere attempts to better understand the jet stream that plays such an integral role in the 

climate of the planet (Lorenz & Hartmann, 2001) (Lorenz & Hartmann, 2003) (Gerber & Vallis, 

2006).  The changing climate is becoming a hot-button topic and one that needs constant 

exploration through rigorous scientific review.  While the public awareness of the changing 

climate is more recent, the concept of studying the variability in the zonal-mean state is not quite 

as new.  In the late 1930’s, Rossby began to study how fluctuations in the intensity of the zonal 

circulation as a whole could lead to the displacement of “atmospheric centers of action”, which 

are understood today as quasi-stationary high and low-pressure centers.  One of the key aspects 

of Rossby’s research was the introduction of the zonal index.  He defined the terms “high” and 

“low” zonal-index patterns to correspond to strong and weak mid-latitude westerlies, 

respectively. In 1948, Willett studied the impact of these zonal-index patterns on the general 

circulation with respect to both latitudinal and longitudinal shifts in portions of the general 

circulation (Willett, 1948).  In 1950, Namias took the concept of a zonal index and used it to 

analyze the effect on the general circulation. He found that the mid-latitude westerlies serve as a 

divider of the cold air in the polar regions and warmer air equatorward. He states that the zonal 

index cycle defines how strong these westerlies, also known as the jet stream, fluctuate and lead 

to these cold air outbreaks which are necessary for the atmospheric heat balance (Namias, 1950).  

Understanding the strength of the jet stream using these zonal indices is a useful tool in 

understanding and explaining how the general circulation and atmospheric heat balance are 

intimately tied to the zonal-mean state of the atmosphere. In recent years, the study of the zonal-



	 2 

mean state in the atmosphere and more specifically, the variability in the zonal-mean state have 

ramped up. 

 

1.1 Defining annular modes and zonal index 
 

 After initial research findings on the zonal-mean state of the atmosphere, further research 

took on the task of investigating the causes of the variability in the zonal-mean state and the 

general circulation.  The modes of this variability are key in understanding how a variable that 

varies in regard to strength or location or some other manner.  The dominant mode of variability 

is located near the midlatitude jet (centered around 50°S).  This variability explains roughly 40% 

of the variance of the zonal wind in the Southern Hemisphere when using twice-daily data 

(Nigam, 1990). The Southern Hemisphere is more commonly studied in past papers due to the 

more consistent nature of the zonal-mean state structure. Many of these studies can be applied to 

the Northern Hemisphere, but there are some additional complexities to consider when studying 

the Northern Hemisphere.  For example, stationary eddies are more prevalent in the Northern 

Hemisphere momentum budget than they are in the Southern Hemisphere (Lorenz & Hartmann, 

2001).  Also, the Northern Hemisphere contains more longitudinal asymmetries than the 

Southern Hemisphere (Lorenz & Hartmann, 2003).  The focus of this paper will be on the 

Southern Hemisphere. The robust nature of this mode is shown through its prevalence in all 

seasons with similar variance in all seasons (Hartmann & Lo, 1998).  Earlier, we stated that 

Rossby identified high and low index patterns by the strength of mid-latitude westerlies, but for 

this paper, we will refer to high index as the time when the jet is poleward of its mean position 

and low index when the jet is equatorward of its mean position.  The zonal index will refer to the 

strength of this dominant mode (Lorenz & Hartmann, 2001).  The second mode that also 



	 3 

explains a significant amount of variance is a stationary fluctuation in the jet speed and jet width 

(Nigam, 1990).  For example, the positive second mode of zonal-mean zonal wind will show a 

strengthening and narrowing of the jet while a negative second mode will show a weakening and 

broadening of the jet.  We will attempt to duplicate these results later in this paper. The 

importance of this finding and understanding of the modes of variability cannot be understated. 

The dominant mode of variability is the north and south shift of the jet region while the second 

mode is the relative strengthening or weakening of the jet.  We hope to address the feedback 

between these two dominant modes and eddy momentum flux in this paper.  

The dominant mode of zonal mean zonal wind variability that resides between 40°S and 

60°S is often referred to as the “Southern Annular Mode”.  Due to the robust and significant 

nature of the variability, many people have investigated the annular mode.  The pattern of 

variability can be seen across many different timescales, from daily to monthly means to 

seasonal (Nigam, 1990).  The variability in the leading modes are seen in both hemispheres and 

show clear similarities, but for this paper, the focus will stay in the Southern Hemisphere.  In the 

Northern hemisphere, the leading mode, or annular mode, is defined as the Arctic Oscillation 

(AO) index, also referred to as the Northern Annular mode (NAM) (Thompson & Wallace, 

2000).  In the Southern hemisphere, the leading mode, or annular mode, is defined as the 

Southern Annular Mode (SAM).   

The annular mode was initially defined as the first EOF of the sea level pressure, which 

was later found to be very similar to the zonal-mean zonal wind  (Thompson & Wallace, 2000).  

We hope to be able to use an understanding of the annular mode to improve the predictability of 

the changes in the zonal-mean zonal wind.  One interesting theory on the annular modes is that 

climate predictability is high if the dominant form of internal variability represents the zonal 
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index and the predictability is lower if the dominant form of variability is defined as the 

poleward propagation (Son & Lee, 2006).  However, in practice, these dominant modes of 

variability will coexist in a single climate state.  Predictability will be high if the ratio of 

fractional variance of EOF2 to EOF1 does not exceed 0.5 (Son & Lee, 2006).  Poleward 

propagation is also important for the poleward shifted jets under climate change because direct 

radiative effect of increased greenhouse gasses is to increase strength of the jet (Lorenz D. , 

2014).  The poleward shift under climate change is only achieved through the same sort of eddy 

feedbacks that cause poleward propagation.  

Annular modes can take on a different structure in different climates due to the changes 

in climatological features, like the latitude of mean jets and the relative strength of baroclinic 

zones.  With the changes in the annular mode structure, the dominant variability could change as 

well through a change in altitude, variance, or a jet shift seesaw (Codron, 2004).  Codron finds 

that changes in the background state through zonal asymmetries or time do not modify basic 

SAM, but they could change the local amplitude of SAM by forcing changes or strength of 

feedback and their local relation between variability and climatological features.  The preferred 

meridional structure will be the one that yields the strongest eddy feedback given the local mean 

state (Codron, 2004).   

 

1.2 Evidence for a shifting jet 
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 Understanding the jet stream and the potential poleward propagation is something of 

significant importance moving forward in a changing climate.  More recent research is starting to 

find the jet may be shifting poleward in future climate simulations, but this poleward shift is 

evident in past climate reanalysis as well (Feldstein S. B., 1998).  Feldstein (1998) used 

reanalysis data to assess the poleward propagation of the zonal mean flow anomalies in both the 

Northern and Southern Hemisphere.  In Fig. 1, we see the results of the analysis of the angular 

momentum anomalies, which is another good proxy to depict the jet stream anomalies, in the NH 

winter from 1991-1992 and the SH summer from 1990-1991 (Feldstein S. B., 1998).  Fig. 1 plots 

the angular momentum anomalies with respect to time and latitude to capture the potential 

Figure 1. Fig. 1 from Feldstein (1998) showing the anomalous angular momentum for a) NH Winter 1991-1992 and b) SH 
Summer 1990-1991.  The solid (dashed) contours are positive (negative) anomalies.  Dark (light) shading denotes positive 

(negative) values. The contour interval is 0.4	𝑋	1001𝑘𝑔	𝑚0𝑠23. 
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propagation of these anomalies.  It is quite clear that the anomalies have a significant poleward 

movement as they propagate through time.  For example, in Fig. 1b, at time = 70 days, there are 

significant positive anomalies at about 10°S.  As we follow this positive anomaly, we see it 

slowly but definitively propagate poleward, eventually reaching about 70°S near time = 130 

days.  We see similar occurrences throughout both Figs. 1a and 1b which illustrate the tendency 

for poleward propagation in the zonal mean flow anomalies.  We will very briefly mention a few 

possible reasons for this poleward propagation in following sections. 

 Model data allows for a clean and controlled environment that allows the user to control 

what is being forced.  We saw in figure 1 that there is clearly a poleward shift in the reanalysis 

data (Feldstein S. B., 1998).  Model data also shows a similar poleward trend when forcing a 

strengthened jet.  Lorenz (2015) used a primitive equation model with simplified physics to 

investigate the relationship between the midlatitude jet and the eddies.  In Fig. 2, we see what 

Figure 2. Fig. 1 from Lorenz (2015) showing 6 perturbed GCM experiments where background shading denotes control 
run and the change in zonal-mean zonal wind are contoured (𝑚𝑠23). The x axis is in latitude degrees and the y axis is in 
pressure (hPa). A) decreases in friction of zonal-mean u B) decrease stratospheric temperature C) increase pole-equator 
temperature gradient D) increase tropical static stability E) decrease thermal relaxation time scale F) decrease friction. 
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happens to the zonal-mean wind when a perturbation is added.  The perturbations in Figs. 2a and 

2f reduce the friction while the perturbations in Figs. 2b-2e enhance the pole to equator 

temperature gradient (Lorenz D. , 2015).  All of the perturbations in Figs. 2a-2f directly increase 

the strength of the jet yet they all also lead to a significant poleward propagation of the zonal-

mean zonal wind.  We will not go into detail on the specifics of this experiment, but it clearly 

shows that stronger jets shifts poleward.  Reanalysis data is another way that we can analyze the 

potential propagation of the jet stream.  Using 

lagged correlation analysis and reanalysis data, 

one can directly investigate the poleward 

propagation of the zonal mean zonal wind and we 

will be utilizing this strategy here.  Previous work 

shows how this can be done.  Lorenz and 

Hartmann (2001) show that there is clearly 

poleward propagation of the zonal mean zonal 

wind by regressing the zonal mean zonal wind 

onto the principal components of the zonal mean 

zonal wind.  This is shown in Figs. 3a and 3b 

where the zonal mean zonal wind is regressed on 

to the second principal component (PC2) of the 

zonal mean zonal wind at time lag = 0 (Fig. 3a) 

and time lag = 20 days (Fig. 3b) (Lorenz & 

Hartmann, 2001).  We see that in Fig. 3a, there 

are high values near the center of the jet at 50°S at lag = 0 which simply shows the atmospheric 

Figure 3. Fig 15 from Lorenz and Hartmann (2001) 
showing anomalous zonal-mean zonal wind regressed on 

PC2 of zonally vertically averaged u when a) 
simultaneous and b) PC2 leads by 20 days.  The dashed 

vertical lines are the EOF2 wind anomaly latitudes. 
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cross section of the zonal mean zonal wind regressed onto PC2.  At lag = 20, we see the positive 

values shift poleward signifying that the anomalies have shifted poleward and further 

demonstrates a poleward shifting jet.  While we will use reanalysis data for the majority of this 

study, we will briefly use some model data to get an idea of what is going on in a “clean” 

environment with the ability to control the forcing exactly. 

Poleward propagation is also studied in fields besides the zonal-mean zonal wind.  For 

example, Yin (2005) looked at poleward shifts in the storm tracks, which in this case are defined 

as regions of enhanced transient variability.  Not only is there a fairly consistent poleward shift 

in the storm tracks, a good proxy for the location of the jet, there is also a slight intensification in 

the jet as well (Yin, 2005).  These findings included both the Northern and Southern Hemisphere 

and while results were more pronounced in the Southern Hemisphere, the Northern Hemisphere 

did show similar results.  Accompanying a poleward shift in the jet is a shift towards the high 

index state of the NAM and the SAM.  In the Southern Hemisphere, there is a poleward shift of 

baroclinicity that is somewhat offset in the Northern Hemisphere by variation in the meridional 

surface temperature gradient (Yin, 2005).  Studies have used multiple datasets to test the 

poleward shift of the jet.  Riviere used the International Panel on Climate Change (IPCC) 

coupled models, a three level quasigeostrophic model, and General Circulation Models (GCMs) 

to see if the jet is indeed shifting poleward (Riviere, 2011).  He hypothesized that increases in 

anticyclonic wave breaking are responsible for the poleward shift.  Lorenz (2014) reviews a 

multitude of possible mechanisms for the poleward jet shift and then tests the mechanisms using 

a simplified model that calculates eddy momentum fluxes.  He concludes that the mechanism 

involves linear Rossby wave reflection on the poleward flank of the jet.  The exact mechanisms 

and the measure of how much these mechanisms affect the poleward shift of the storm track are 
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still being examined, but the robust nature of the poleward shift is consistent.  The exact 

mechanisms of the poleward shift are a bit outside the scope of this paper but could benefit from 

further research. 

Unfortunately, there is evidence that the poleward jet shift will continue into the 21st 

century.  CMIP3 20th century simulations of the eddy-driven jet in the Southern Hemisphere 

show good correlation with the response of the jet to enhanced greenhouse gas forcing scenarios 

expected in the 21st century (Kidston & Gerber, 2010).  The correlation is also significant 

between the biases of the latitude of the jet and the internal variability of the model when being 

measured by the annular mode time scale.  Studies like Kidston and Gerber are working to model 

the jet stream using 20th century climatology to help improve the projections of the future of the 

jet stream in a changing climate. As more models are created and run, the results showing a 

shifting jet become hard to ignore, especially when these models are run with projected climate 

conditions.   The Coupled Model Intercomparison Project phase 5 (CMIP5) utilizes a multimodal 

approach which producses consistent results when changing certain parameters, such as 

increased greenhouse gas emissions.  CMIP5 shows that the majority of jets shift poleward with 

climate change by the end of the 21st century (Barnes & Polvani , 2013).  The poleward shift of 

the jet in the Southern Hemisphere is nearly double that of the Northern Hemisphere shifting by 

about 2 degrees of latitude when using the representative concentration pathway of 8.5 (RCP8.5) 

(Barnes & Polvani , 2013).  The speed of the jet also increases in the Southern Hemisphere.  

While RCP8.5 is the IPCC “worst case” scenario for greenhouse gas emissions, it shows that a 

changing climate will have an effect on the jet stream, likely shifting it poleward.  The impacts 

that a shifting jet can have on variables such as precipitation or temperature are important to 
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understand for people to physically understand how a shift in the jet will affect them personally.  

These are tangible effects and the ones that often can lead to changes in perception. 

 

1.3 Impacts of shifting jet on climate  
 

These complex climate models have allowed studies to see the potential future changes of 

the location and strength of the jet as well as the impacts a shifting jet may have 

climatologically.  Both temperature and precipitation are the primary ways in which people can 

relate to changes in the climate. Accompanying a poleward shift in the jet stream, there is also a 

poleward shift in both precipitation and wind stress (Yin, 2005).  The strengthening of the 

poleward shift of baroclinicity in the Southern Hemisphere is somewhat offset by the changes in 

the surface meridional temperature gradient in the Northern Hemisphere (Yin, 2005).  

Understanding the behavior of the jet in both hemispheres is critical because there are some 

important differences in each hemisphere that could affect the zonal-mean zonal wind as a 

whole.  To see some differences in the Northern Hemisphere, some studies divide their results 

into seasons (Simpson, Shaw, & Seager, 2014).  The Northern Hemisphere only shows robust 

poleward shift in the fall seasons in both Atlantic and Pacific Jets. In fact, in the winter seasons, 

the jet in the east Pacific shifts equatorward and the jet in the Atlantic strengthens over Europe 

(Simpson, Shaw, & Seager, 2014). We see here that in a changing climate, the jets will shift in 

both location and strength, and may do so slightly differently in different seasons and different 

regions. For now, this research will focus on the jet in the Southern Hemisphere, but with some 

additional time could be adapted to include the Northern Hemisphere broken up into seasons. 

Breaking the jet stream down into the two leading modes of variability provides some 

significant insight, but also provides challenges and uncertainty when it comes to identifying the 
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cause or relationship between eddies and the jet stream.  While it is understood that the eddies 

drive changes in the zonal-mean wind, studies want to understand if the zonal-mean wind 

changes have an effect on the eddy momentum fluxes or if there is a zonal-wind eddy feedback 

(Lorenz & Hartmann, 2001).  One theory as to how a feedback would work here is that there is 

some baroclinic wave activity in the jet. The wave activity will propagate away from the jet 

which means that there will be momentum flux into the jet to account for the wave activity lost 

(Lorenz & Hartmann, 2001).  However, this is found to not be the reason of the feedback and it 

is instead due to the index of refraction of barotropic Rossby Waves (Lorenz D. , 2014).  We will 

not investigate the mechanisms of the feedback further in this paper as the focus will be on 

quantifying the feedbacks parameters. Through research of the momentum budget, there is a 

clear positive feedback between the zonal-wind anomalies and eddy-momentum fluxes in both 

the Northern and Southern Hemisphere (Lorenz & Hartmann, 2001) (Lorenz & Hartmann, 

2003).  A common strategy for looking at the modes of variability is through Empirical 

Orthogonal Function (EOF) analysis.  Kisdon (1988) used EOF analysis to look at the zonal 

indices of the Southern Hemisphere zonal wind (Kisdon, 1988).  EOF analysis is adept at picking 

out the leading modes of variability from data in which that would be incredibly challenging to 

do. It has been used to study the zonal-mean wind and eddy momentum flux feedback (Lorenz & 

Hartmann, 2001) (Lorenz & Hartmann, 2003) (Eichelberger & Hartmann, 2007).  We will 

attempt to use EOF analysis in further investigating the eddy-flow feedback in this paper. 

 

1.4 Evidence for Eddy-Flow Feedback 
 

 Understanding how the eddy-flow feedback affects the jet stream is critical in this study.  

Remember, the zonal index refers to the dominant mode of variability in the jet.  There is 
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evidence that the zonal index dominates in the summer season for both hemispheres and also the 

winter season in the Southern Hemisphere (Feldstein & Lee, 1998).  When dealing with eddies, it 

is important to look at different frequencies because feedbacks can occur at different timescales.  

When dividing the eddies into different frequency bands, the evidence shows a consistent eddy 

feedback by the high frequency (period of less than 10 days) transient eddies (Feldstein & Lee, 

1998).  The presence of these eddies prolongs the zonal index anomalies for both low and cross 

(product of high and low) frequency eddy forcing (Feldstein & Lee, 1998).  A simple 

atmospheric model corroborates the importance of the frequency in the eddy forcing.  Eddy 

feedback is positive for low-frequency variability in the zonal flow, but is negative when the 

frequency period is less than a month (Robinson, 1994).  There is a feedback here between the 

eddies and dominant mode of variability in the jet stream and we hope to investigate this further 

using also the second mode of variability. 

 

1.5 Objectives 
 

The focus of investigation in this paper is the eddy-flow feedback, but it is different from 

previous studies in one key way.  We will look at the eddy-flow feedback using a two-mode 

approach.  Most previous studies look at just the leading mode of variability, but we will be 

using both the leading mode of variability and the second leading mode of variability.  Feldstein 

and Lee (1998) found that to identify the poleward propagation of the jet, using two modes was 

necessary.  Using two modes provided evidence to prove that an eddy feedback was present with 

the high-frequency transient eddies (Feldstein & Lee, 1998).  Also, a response to external forcing 

suggesting stronger jets shifting poleward requires a coupling between changes in phase with the 

jet and out of phase with the jet, or EOF2 and EOF1 respectively.  We will use EOF analysis as 
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the primary statistical tool in an attempt to quantify the feedback between the eddies and the 

zonal mean flow for both of the leading modes of variability (EOF1 and EOF2).  Careful EOF 

analysis is key when working with the two modes because there are many interactions to 

consider.  Instead of just looking at the dominant mode of variability and quantifying the 

feedback between the zonal wind and the eddy flux convergence, we will be looking at 

quantifying the feedbacks for each of the two modes for each of the two variables giving us four 

feedback parameters.  We will also investigate the seasonality of these feedbacks 

 

2. Methods 
	

 The focus of this study is to quantify the feedback parameters of zonal mean wind and 

eddy-momentum flux using the two dominant modes of variability.  To accomplish this, we will 

primarily use EOF analysis and lagged correlation analysis.  In section 2.1, we will introduce in 

greater detail the use of EOF analysis to explain why this is the best tool for this research 

question and what concerns using EOF analysis may bring to light.  The next two sections, 2.2 

and 2.3, will introduce the datasets we used in this investigation.  We use both a synthetically 

generated dataset along with reanalysis data.  The final section, 2.4, will carefully explain the 

steps taken to transform the raw yearly data into more manageable pieces through reducing the 

dimensionality and dividing into seasons.  We will also discuss the necessary weighting, removal 

of mean annual cycles, and addition of buffers necessary to make sure that the EOF analysis 

could be used effectively on this data.   

	

2.1 Empirical Orthogonal Functions (EOFs) 
	



	 14 

The study of the atmosphere is unique in that it not only requires high dimensional data, 

but it also requires that the data be processed quickly (Monahan, Fyfe, Ambaum, Stephenson, & 

North, 2009).  EOF analysis has been used in the study of the atmosphere since the late 1940’s 

(Obukhov, 1947).  EOFs allow for the decomposition of high dimensional data from a field that 

contains time and space into spatial patterns and time indices accomplishing the goal of reducing 

dimensionality (Hannachi, Jolliffe, & Stephenson, 2007).  A known challenge when studying the 

atmosphere is the presence of both propagating and stationary features.  With these challenges 

present, EOFs are not a perfect tool to use when studying the atmosphere and can be tough to 

interpret.  EOFs have some geometric properties and orthogonality in space and time that makes 

the interpretation difficult. One way to handle high dimensional data is through careful use of 

statistical techniques that can reduce the dimensionality.  Empirical orthogonal function (EOF) 

analysis is one way to attack a complex atmospheric dataset which allows for this key reduction 

of dimensionality.  EOF analysis is popular for a number of reasons according to Weare and 

Nasstrom (1982).  One reason is that EOF analysis describes variations of complex geophysical 

fields with few functions and time coefficients.  Another reason they give is that EOF analysis 

works well with any variable observed on any grid (Weare & Nasstrom, 1982). 

One must be cautious though when using EOF analysis, or any statistical technique for 

that matter, as statistics tend to leave a biased imprint on the output (Monahan, Fyfe, Ambaum, 

Stephenson, & North, 2009).  For EOF analysis, this imprint can lead to some challenges when 

trying to understand the physical and dynamical components of the dataset.  EOF analysis does 

contain some bias that must be considered, but it can also be extremely valuable in understanding 

the spatial structures and which ones carry the most variance (Monahan et al, 2009). 
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EOF analysis provides EOFs and principal components (PCs) that can be converted into 

power spectra and ultimately lagged correlation.  Lagged correlation analysis more clearly shows 

how the different modes are connected or correlated.  Lagged correlations can be used to 

highlight dynamical affects and can do well with stationarity, but may struggle when dealing 

with propagating features (Byrne, Shepherd, Woolings, & Plumb, 2016).  Positive lagged 

correlations between two variables shows that they are varying together identifying these 

correlations are important.  Negative lagged correlations are important too as they show 

relationships that are out of phase compared to the positive lagged correlations which are in 

phase relationships.   Using lagged correlations to distinguish between the presence of eddy 

feedbacks and nonstationary interannual variability is a known challenge that could use further 

research (Byrne, Shepherd, Woolings, & Plumb, 2016).  There is also significant seasonal 

dependence on lagged correlations.  We hope to investigate the correlations between the two 

modes in the eddy-zonal flow feedback and see how they change when there is no feedback 

present for both full and seasonal data. 

The benefits of using a conventional EOF analysis are easy computation and efficient 

data reduction along with containing some useful geometric properties.  The deficiencies of the 

conventional EOF analysis are the predictable relations between EOFs and the interpretability of 

physical features.  The other types of EOF analysis are REOFs, simplified EOFs, extended 

EOFs, and complex EOFs (Hannachi, Jolliffe, & Stephenson, 2007).   But each type of EOF 

analysis does have some deficiencies.  For example, rotated EOFs (REOFs) may be used as an 

alternative to EOFs and can identify more local features but cannot handle propagating features.  

All of these different types of EOFs contain some benefits to go along with some deficiencies.  
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The research here uses different datasets to glean important information about the 

research question.  We will first briefly explain each set of data we will use in the paper and then 

get into how we plan to use each dataset to get results. 

 

2.2 Synthetic data 
	

Before working with the ERA-Interim data, we realized that the best way to back out an 

unknown feedback parameter would be to generate a synthetic dataset with an imposed feedback.  

With a known feedback, we can work backwards using our methods to see if we can accurately 

back out the feedback parameter(s) that we imposed.  A synthetic dataset of the same size as the 

observed data will be useful in corroborating our statistical techniques with consistency.  By 

creating the same size synthetic dataset, it will be easy to simply change the input data from the 

synthetic data to the reanalysis data once we know that our methodology is sound.  It is 

important to note that we are not creating specific wind and eddy momentum flux values in a 

traditional sense.  Instead, we are creating zonal-mean wind and eddy momentum flux principal 

components that mimic the principal components we use in the EOF analysis of the ERA-Interim 

data.  The most basic synthetic dataset we create uses Equation 1 below:  

45
46
= 𝑟 − 5

9
	                                                  Equation 1 

where 𝑢 is the zonal wind, 𝜏 is the damping timescale primarily due to surface friction, 𝑟 is the 

random eddy forcing, and 𝑡 is the time. 

 Equation 1 represents the vertical and zonal-mean momentum budget.  The Coriolis term 

(f*v) disappears because it has equal and opposite signs in the upper and lower troposphere.  

This leaves us with Eq. 1 which simply shows that 𝑢 is forced by the eddy momentum flux 

convergence (𝑚) and friction (𝑢/t).  The r in these equations has the same length (55520, all 



	 17 

time steps) as the principal components of EOF 1 and EOF 2 of the ERA-Interim data.  We set t 

to be 8 days, which is a reasonable value for damping rate of friction on the vertically averaged 

flow.  We can use the data generated here to plot the auto correlations and the correlations 

between the eddy momentum flux and the zonal mean wind Once we can create our most basic 

synthetic dataset, we can build on it by adding feedbacks.  First, we will just add one feedback 

parameter.      

When we induce a feedback (see Table 1 for a11), the only difference to the original 

equation is the addition of a feedback term, which in this case is au where a is the feedback 

constant and u is the same u in Eq. 2.  The single feedback case is the only one considered so far 

in literature (e.g. Lorenz & Hartmann, 2001).  Eddy forcing has two components: a random 

component and a component that is dependent on 𝑢.  We know that 𝑎 > 0 means that eddies are 

not purely random but a component of eddy forcing reinforces the 𝑢 anomalies and vice versa for 

𝑎 < 0. 

45
46
= 𝑚 − 5

9
                                                  Equation 2 

where 𝑚 = 𝑟 + 𝑎𝑢.  

The last thing we do to this synthetic feedback is create a two-mode feedback to allow the 

possibility the EOF1 is coupled to EOF2, which is consistent 

with the poleward propagation of 𝑢 anomalies seen in 

observations (Feldstein S. B., 1998).  When we add a second 

mode to both the zonal-mean zonal wind and the eddy forcing 

term, we get a matrix equation as seen in Equation 3, which is 

still quite similar to Eq. 2.  

 U1 U2 

M1 𝑎33 = 	
3
A
t  𝑎30 = 	

2
3 t 

M2 𝑎03 = 	−
2
3 t 

𝑎00 = 	0 

Table 1. Imposed feedbacks for Synthetic 
Data. 
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45C
46
45D
46

=
𝑚3
𝑚0

− 3
9

𝑢3
𝑢0                                         Equation 3 

where the subscripts denote Mode 1 and Mode 2 and 𝑚1	𝑎𝑛𝑑	𝑚2 are explained: 

𝑚3
𝑚0

=
𝑎33 𝑎30
𝑎03 𝑎00

𝑢3
𝑢0 + 𝑟                                 Equation 4 

 

When we create a two-mode feedback, due to the matrix aspect of Eq. 3, we are actually 

creating 4 feedback parameters (see Eq. 4).  To generate these synthetic datasets, we have to 

impose our own feedback parameters into the equations for the zonal wind and eddy momentum 

flux data seen above.  Table 1 shows the feedback parameters we used and how they are 

connected each of the two modes of 𝑢 and 𝑚.  We choose these feedback parameters because 

they were somewhat close to the actual feedback parameters we found with our reanalysis data.  

By choosing feedback parameters to impose that were close to the actual feedback parameters we 

found, we can more confidently compare between the two cases.  We could have run the 

synthetic data case with exactly the same feedback parameters we found but chose not to for one 

main reason.  It does not matter exactly what the feedback parameters are in the synthetic data 

case because we use this dataset as a proof of concept.  If we can back out the imposed feedbacks 

accurately, we know we will be able to do the same with the reanalysis data, but the actual 

feedback parameters are not as important as the process.  We will use the same t  for each mode 

in this case, but we should note here that the t  will be slightly different in each mode in our 

reanalysis data.  We will show the difference in t for the two modes in later analysis.  Because 

we know exactly what our feedback parameters are, we can use some statistics to back out the 

feedback parameters and test our methodology. If we cannot replicate the parameters exactly, we 

will have to change our statistical techniques to make sure we can replicate them.  If we can 
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replicate them, we know that our methodology is sound, and we should be able to back out each 

of the feedback parameters from the ERA-Interim data.  

 

2.3 Observed data 
	

For this study, the primary dataset we used for analysis was the ERA-Interim (European 

ReAnalysis) generated by the European Centre for Medium-Range Forecasts (ECMWF).  The 

ERA-Interim dataset provides a new and improved version of the ERA-40 dataset, a 

sophisticated atmospheric reanalysis (Dee, et al., 2011). This reanalysis provides a plethora of 

atmospheric variables useful to understanding the atmosphere.  For this study, we will focus on 

using the wind, both zonal (u) and meridional (v), for all points on the specified grid.  While 

meridional wind will not be investigated directly, it will be used through an eddy momentum 

flux term which is a product of zonal and meridional wind. The variables are in the form of 4 x 

daily data (or 6-hourly) with 18 pressure levels (1000,925, 850, 775, 700, 600, 500, 400, 300, 

250, 200, 250, 100, 70, 50, 30, 20, and 10 mb) on a grid with 240 longitude points and 121 

latitude points.  The time dimension covers a span of 39 years from 1979 to 2017. This is a much 

more recent dataset than the older ERA-40 which covers more time but is not as recent as it goes 

from 1957 to 2002. The ERA project does have one dataset that does cover over 100 years in the 

ERA-20C dataset, but the early years include sparse data as observations were less reliable due 

to limited coverage by observing stations.  ERA-Interim is the most recent dataset and the most 

robust giving us a good dataset to run our study with.  Before moving forward with using this 

data, we must make a note of the way we took the raw yearly data and formulated it into a way 

that we could use it effectively and efficiently.   
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2.4 Setting up the Data  
	

We need to create zonal and vertical averages 𝑢 before we do the analysis of the ERA-

Interim data.  We use the zonal and vertical average of 𝑢 becuse the momentum budget in this 

case is very simple.  Therefore, it is easy for us to isolate the effect of the eddies on 𝑢.  For 

example, if things depend on longitude, we still have meridional eddy momentum fluxes, but 

advection by the mean flow itself could change the location of the resulting 𝑢 anomalies forced 

by the eddy momentum fluxes.  In addition, there are other terms that are involved if we do not 

take the zonal and vertical averages which could make it difficult to identify the effect of eddies 

on 𝑢.  A fringe benefit of taking the zonal and vertical averages of 𝑢 is that we do reduce the size 

of the data significantly making computations significantly easier and faster.   

Since we do take the zonal averages, we lose the ability to investigate specific regions 

because we only focus on the latitude, but there are some studies that have looked at the regional 

evidence and effects of a shifting jet.  These regional investigations of the shifting jet are 

important as they can key in on the specific impacts a shifting jet may have on each region, 

which may be different from region to region.  For example, the positive phase of the SAM 

decreased geopotential height in the midlatitudes and strengthened the poleward shift of the 

storm tracks (Thompson & Wallace, 2000).  The effects of this positive phase are linked to a 

significant cooling over Antarctica and Australia, but a warming over the Antarctic Peninsula, 

Argentina, Tasmania, and southern New Zealand (Gillett, Kell, & Jones, 2006).  The regional 

impacts of precipitation also show dry conditions over South America, New Zealand, and 

Tasmania, but wet conditions over Australia and South Africa (Gillett, Kell, & Jones, 2006).  

These are just a few examples of the impacts that the shifting jet may have on specific regions, 

especially in a changing climate.  It is important to understand the regional behaviors of the jet 
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and the impacts, but for our study, we will be focusing on the zonal mean jet and how it varies in 

a changing climate.    

 

2.4.1 Removing Mean Annual Cycle 
	

   A key step we have to take when working with this data is removing the mean annual 

cycle.  We remove the mean annual cycle because there is so much variability due to the seasons 

that we do not want that variability to interfere with the internal variability specifically linked to 

the jet and eddy interaction.  Without removing the variability, the dominant mode of variability 

would undoubtedly be the seasonal variability.  To remove the mean annual cycle, we find the 

average over 39 years for each calendar date in the record.  Because each calendar date has 4 

time steps due to the 6-hourly data, we have four separate averages for each date (00, 06, 12, and 

18 UTC).  For example, this means that all data points for January 1 at 12 UTC over all 39 years 

are placed in an annual dataset.  This will give us 39 data points at each time for a full year.  We 

can take the mean at each time step in this full year of data to get a mean annual cycle dataset 

made up of the means for each time step.  Once we have our mean annual cycle created, we 

smooth it.  The reason for smoothing the mean annual cycle is because while 39 years is a robust 

time period, there can still be some noise in the mean annual cycle.  We use a 30-day moving 

mean to smooth the mean annual cycle.  We properly account for the idea that the mean annual 

cycle is periodic in time when we smooth the mean annual cycle.  With the mean annual cycle 

calculated and smoothed, we can then simply subtract it from the original dataset to get the 

anomalies.  Anomalies of the data will help give us more useful information on the variability of 

the zonal mean wind and the eddy momentum flux feedback as we do not have to worry about 

seasonal variability interfering with the variability we are trying to investigate. 
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2.4.2 Momentum Flux Convergence 
	

Using the ERA-Interim zonal wind and meridional wind, we calculate the eddy 

momentum flux.  We do so by removing the zonal mean 𝑢 and 𝑣 to find the eddy 𝑢 and 𝑣 which 

we will denote by 𝑢′ and 𝑣′.  Then we multiply 𝑢′ and 𝑣′ together and zonally average to get the 

eddy momentum flux which we denote as 𝑢′𝑣′.   

Once we have 𝑢′𝑣′, we can use an equation to convert from  𝑢′𝑣′ into the eddy 

momentum flux convergence (denoted by 𝑚) which we will use in our analysis.  Note the 𝑢′𝑣′ 

here is also vertically averaged when doing this calculation (see next section).  The equation we 

use to convert this into a flux convergence is a form of centered differencing that uses the cosine 

of latitude.  We use the exact derivative form of this equation and we use standard order centered 

differences to approximate, except at the poles where first order differences are used.     The 

equation we use here is: 

𝑚 =	− 3
HI∗KLM q D ∗

4(5OPO∗KLM q D

4(q)
                                  Equation 5 

where 𝜃 is latitude and 𝑅𝑒 is the radius of the earth, and 𝑚 is the eddy momentum flux 

convergence. 

This equation takes the difference of 𝑢′𝑣′ at one latitude on either side of the latitude we 

are looking for and divides by the area between the two latitudes.  To make the 𝑚 values more 

intuitive, we convert 𝑚 units to m/s/day by dividing by the number of seconds in a day. By 

converting into per days, we get a better sense for what the eddy momentum flux convergence is 

doing on a daily timescale.  Note here that we will be using 𝑚 to refer to the eddy momentum 

flux convergence for the rest of this paper. 
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2.4.3 Vertical averaging, Weighting, Daily Means 
	

Once we remove the mean annual cycle, we take the vertical average from 1000mb to 

100mb and weight by mass.  The averaging is confined below 100mb because, the stratospheric 

dynamics at those levels have the potential to interfere with our results and could introduce 

variability that is completely different than the variability we are looking to identify.  When 

performing EOF analysis, the data is additionally properly weighted by latitude to take into 

account the decrease in area towards the poles (e.g Lorenz & Hartmann, 2001).  Moving 

forward, we will perform EOF analysis on the daily mean 𝑢 values.  We will still use the original 

6-hourly data as they will be projected onto these daily EOF patterns to produce 6-hourly PCs 

that we will use for our lagged correlation analysis.  

 

2.4.4 EOFs to get Principal Components 
	

 Now that we have all of our data in the correct forms, we can start our EOF analysis.  The 

first thing we need to do is perform a singular value decomposition which will produce the 

EOFs, Principal Components (PCs) and a diagonal matrix of singular values. In our case, the 

input is the cosine weighted, vertically averaged zonal wind (denoted as 𝑢′) and we chose an 

arbitrary amount of EOFs to be 20.  We will only be looking at the first 2 EOFs for our analysis.  

The first two modes explain the most variance, but the amount of variance explained drops off 

with each mode.  Note that we do not do EOF analysis directly on 𝑢′𝑣′.  We project 𝑢′ and 𝑢′𝑣′ 

onto the EOF patterns we calculate from the daily 𝑢′. The equations we use to project the data 

onto our EOFs are: 
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𝑃𝐶	𝑢1 = WXY3 Z6 ∗5[ Z6
Z\

                                          Equation 6 

𝑃𝐶	𝑢2 = WXY0 Z6 ∗5[ Z6
Z\

                                          Equation 7	

𝑃𝐶	𝑚1 = WXY3 Z6 ∗5P[ Z6
Z\

                                         Equation 8 

𝑃𝐶	𝑚2 = WXY0 Z6 ∗5P[ Z6
Z\

                                         Equation 9 

where 𝑛𝑦 = 48 for the number of latitude points between 81°S and 10.5°S.  

 It is important to emphasize a point made earlier regarding the use of daily and 6-hourly 

data.  The EOF1 and EOF2 in Eqs. 6-9 are generated using the daily 𝑢′ and the 𝑢′ and 𝑢′𝑣′ terms 

in those equations are the 6-hourly data.  We calculated the EOFs using daily 𝑢′ and this is the 

only time we really use the daily 𝑢′.  We project the 6-hourly 𝑢′ onto the EOFs to make sure that 

our PCs are in the form of 6-hourly data. One reason to use 6-hourly data when creating the PCs 

is that daily mean data has trouble capturing the eddy feedback due to medium scale waves. 

Medium scale waves play an important role on the variability of the SAM.  SAM is supported by 

a positive feedback between the zonal mean wind and the eddies and about two thirds of that 

feedback comes from synoptic waves and the other one third comes from medium scale waves 

(Kuroda & Mukougawa, 2011).  Medium scales waves may have smaller climatological 

amplitudes than synoptic waves, but their influence is significant, especially at short timescales, 

and therefore, we must take that into account and use the 6-hourly data in our PCs.  While we 

use the daily means to create the EOFs, we still need to use the 6-hourly data to project onto 

those EOFs to get the PCs. 

 Because the sign of EOFs are arbitrary, we impose the following sign convention on the 

EOFs so that results are easy to compare across seasons: a) EOF1 is positive poleward of the jet 

and negative equatorward of the jet and b) EOF2 is positive at the latitude of the jet.  Also, the 
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EOFs shown here are given in units of the corresponding field by projecting the original 

anomalies on the normalized PC time series.   

 

2.4.5 Adding Buffers for Seasonal Analysis 
	

 Once we have the PCs, we will begin the process of working towards lagged correlation 

analysis, but we have to make a note of one small but important step in which we add buffers to 

the end of our seasonal analysis due to assumptions implicit in Fourier decomposition.  We will 

calculate power spectrum from the PCs and then convert power spectrum to lag covariances and 

eventually, lagged correlations.  Using lagged correlations will allow us to interpret our results in 

a more meaningful manner and also provide the opportunity to calculate the feedback 

parameters.  However, certain calculations will be easier to do in Fourier, or frequency, space.  

To ensure complete consistency between spectral (power spectrum) and temporal (lagged 

covariances, correlations) analysis, power and cross spectra are computed first and then we 

directly compute lagged covariance from the spectra using Fourier transform.  Because a Fourier 

decomposition implicitly assumes time series are periodic, cross covariances at nonzero lags 

computed using a Fourier transform are contaminated because the start and end of the time are 

assumed to be adjacent.  To account for this adjacent assumption, we add a buffer of zero values 

with a length of at least the number of lags to each season prior to spectral analysis to prevent the 

contamination.    
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3. Results 

Before we 

begin to run our 

statistical 

analysis to 

investigate the 

variability in the 

zonal-mean, it 

would be 

beneficial to look 

at the what the 

annual mean state 

of the zonal wind looks like in an atmospheric cross section using the ERA-Interim data (Fig. 

4).  This is important to point out the key features before running our statistical analysis because 

this will help provide more of a full picture of what the zonal wind looks like for the annual 

mean of the ERA-Interim data. We can now view the zonal wind with respect to vertical height 

and latitude. In Fig. 4, we see two significant peaks in wind speed in two locations, about 30°S 

and about 35°N. These signify the two main jets that we see in the Southern and Northern 

Hemisphere, respectively.  We should note here that the zonal jets for any given day are the 

subtropical and the polar jets, but when we take the zonal-mean zonal wind, they are averaged 

out.  Also, note the extension of the jet in the Southern Hemisphere to about 50°S. The jet 

located at 30°S is called the subtropical jet, where the zonal wind is the strongest, and the jet 

Figure 4.  Mean annual conditions of zonal (u) wind from ERA-Interim data measured in 
𝑚𝑠23. 
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located at 50°S is the mid-latitude jet.  Later, we will weight with respect to the vertical 

dimension.  From here on out, we will almost exclusively be view the variability of the zonal 

wind with respect to just latitude.  In figure 5, we see the zonal mean 𝑢 wind for both 

hemispheres at two different levels (250mb and 850mb).  The levels chosen are arbitrary and 

meant to provide an example of how the jet appears in a zonal-mean sense as we move forward 

in the analysis.  As we see in figure 4, figure 5 also clearly shows the location of the major jets in 

each hemisphere for both levels sampled here.  Both Figs. 4 and 5 show a relatively stronger 

Southern Hemisphere jet than Northern Hemisphere.  We can note here that the jet is stronger in 

the upper level (250mb).  The mid-latitude jet is where there tends to be the strongest zonal 

winds at the surface.  The subtropical jet is tightly linked to the heating gradient between the 

tropics and the subtropics (Lorenz and Hartmann, 2001).  Thus, most of the variability in the 

Figure 5. Annual mean zonal (u) wind at a) 250 mb and b) 850mb. 
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subtropical jet is due to the seasonal cycle of heating in the tropics where we see a strong jet in 

the winter and a weaker jet in the summer.  We will focus on the mid-latitude jet because the 

eddies are the most important for this jet.  Eddy activity is created by the instability linked to the 

temperature gradient of the lower levels of the mid-latitudes (Lorenz and Hartmann, 2001).  The 

ocean plays a large role in maintaining this gradient and in the Southern Hemisphere, where the 

oceans dominate, the seasonal cycle is much smaller than in the Northern Hemisphere.  This 

means most of the variability in the zonal-mean zonal winds is largely due to internal dynamical 

processes and not due to the external seasonal cycle (Lorenz and Hartmann, 2001). 

 

3.1 Synthetic Data 
	

 Once we have a general understanding of the basic jet structure and how to set up the 

EOF analysis, we can use a synthetic dataset to compare against the ERA-Interim data which 

will be seen later.  The benefit of using a synthetic dataset is that we can relatively easily impose 

feedbacks to the dataset which will give us the opportunity to see if we can correctly back out the 

feedback parameters.  We do not use the synthetic data to investigate the EOF structure because 

we start with generating the principal components used in lagged correlation analysis. 

 

3.1.1 Lagged Correlation Analysis 
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Because the synthetic data created is already in the form of PCs, we can begin with the 

lagged correlation analysis.  With the reanalysis data, we will go through the EOF analysis from 

the original data to produce the PCs which we do not do here.  Note here that the synthetic data 

in this section is generated from Eq. 1 where 𝑚 is random noise and u is generated from Eq. 1.  

Figure 6 shows the lagged auto correlation of the u and lagged auto correlation of m and the 

lagged cross correlation u and m.  Note that the two auto correlations only show the positive lags, 

but are mirrored identically in the negative lags.  By definition, an auto correlation is correlating 

one variable with itself and so since the variable is the same, the correlation will be the same at 

corresponding positive and negative lags. The first thing we notice is that the 𝑢	auto correlation 

Figure 6.  Lagged correlation analysis of Synthetic data with no feedback. A) Auto correlation of u B) Auto 
correlation of m C) Cross correlation of u and m when at negative lags m leads u and at positive lags u leads m. 
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drops down to zero correlation after about 30 days.  Since we generate the 𝑢 from Eq. 1, you can 

see that there will be some correlation between different lags of 𝑢.  On the other hand, the auto 

correlation of 𝑚 shows an initial value of 1 at lag = 0, but immediately drops to zero correlation.  

This is what we would expect because the 𝑚 is completely random so there is no connection 

from point to point.  But when we use Eq. 1 to get 𝑢, there is some correlation between different 

𝑢 values up until lag = ± 30 days.  We gain some significant insight when looking at the cross 

correlation between 𝑢 and 𝑚 and this relationship will be an important focus in our reanalysis 

data.  When 𝑚 leads 𝑢, the correlation is high at short negative lags and drops towards zero near 

lag = -30 days.  The strong correlations at short negative lags are a result of the eddy momentum 

flux forcing the zonal wind (Lorenz & Hartmann, 2001).  The reason for the relatively large 

Figure 7.  The power spectrum for the synthetic data with no feedback. A) Power spectrum of u and B) Power 
spectrum of m. 
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magnitude of the correlation at the short lags is due to the differences in the timescales of 𝑢 and 

𝑚 (Lorenz & Hartmann, 2001).  However, when 𝑢 leads 𝑚, the correlation is zero at positive 

lags, which is expected.  We expect this to be the case because 𝑚 is forcing 𝑢.  At negative lags, 

Fig. 6c shows the correlations when 𝑚 leads 𝑢.  This has high correlation values near zero 

because 𝑚 forces 𝑢.  At positive lags in Fig. 6c, 𝑢 leads 𝑚 and because 𝑚 forces 𝑢 in the 

generation of this dataset, there is no correlation in the other direction.  We can also look at the 

power spectra for each variable as well to see what frequencies of the signal have the highest 

power.  In Fig. 7, the key observation is that the timescale of 𝑢 is much longer than the timescale 

for 𝑚.  Also, the power spectrum for 𝑚, is quite random in this case and there is not much we 

can take from this.  There is a slight peak of 𝑚 around 0.2 per day but it is not robust.  Because 

𝑚 is completely random, we can assume this is purely an artifact and due to the random noise.  

In the cases where we add feedbacks, we will be looking primarily at how the correlations 

change.  We conserve all of the information present in the power spectra through Fourier series 

when converting to correlation and could learn something from the power spectra, but it will be 

much easier moving forward to focus on the changes in correlations to gain insight.  

When we add a feedback to the synthetic data, the correlations may appear to change 

only slightly, but this change is important.  In Fig. 8, we see a similar pattern in the correlations 

when we add a feedback to the pattern in the no feedback original case.  In the auto correlation of 

𝑢, the correlation at high lags drops down as it did before, but it does not drop all the way down 

to zero in the 30 days.  The auto correlation for 𝑀 is perhaps more telling in that instead of going 

to zero after lag = 0, there is a slight positive correlation.  Before we added a feedback, 𝑚 forced 

𝑢 but the opposite was not the case (𝑢 did not force 𝑚).  When we add the feedback, we use Eq. 

2 where 𝑚 forces 𝑢 and additionally 𝑢 feeds back on and alters 𝑚 (see 𝑚 term in Eq. 2).  There 
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is a positive correlation of 𝑢 and 𝑚 which is higher at the lower lags and slowly trails to zero.  

We can see this a bit more exaggerated in the cross correlation of 𝑢 and 𝑚.  The addition of a 

feedback has an affect that produces positive correlations at small lags.  We will be focusing on 

identifying these non-zero correlations at large positive lags because non-zero correlations at 

these longer lags are evidence of a feedback.  We must note a key point to understand why this is 

evidence for a feedback.  The correlations at positive lags only imply a feedback if we assume 

that 𝑚 inherently by itself has no long-term persistence, which is a given due to the random data 

we started with.  Then we can say that with this assumption, correlations at positive lags mean 

that 𝑚 anomalies are persisting after they force 𝑢.  Because this persistence cannot come from 

Figure 8. Lagged correlation analysis of synthetic data with a feedback (blue) and with no feedback (red).  A) Auto 
correlation of u B) Auto correlation of m C) Cross correlation of u and m where at negative lags m leads u and at 

positive lags u leads m. 
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the eddies themselves, it must be coming from somewhere else.  Because the 𝑢 anomalies 

persist, the most prudent hypothesis is that 𝑢 is also affecting 𝑚 and this leads to the persistence 

of 𝑚 anomalies in the 𝑢 and 𝑚 lagged correlation.  

Adding a second feedback introduces more cross correlations to compare how the modes, 

or feedbacks, impact the others.  For example, if we just look at the auto correlations for 

𝑢1, 𝑢2,𝑚1 and 𝑚2, we do not see much difference in the general shape of each auto correlation.  

In Fig. 9, we see that 𝑢1 is similar to the one mode auto correlation of 𝑢 in that the correlation is 

high at lag = 0 and drops to zero by lag = 30.  However, the 𝑢2 drops below zero around lag = 

±16 days.  The reason for this going negative is not immediately clear but this is the main 

difference in the auto correlations of 𝑢 when adding a second feedback.  The 𝑚1 and 𝑚2 auto 

Figure 9.  Lagged Correlation analysis of synthetic data with two mode feedback. A) Auto correlation of u1 B) Auto 
correlation of u2 C) Auto correlation of m1 D) Auto correlation of m2 
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correlations are nearly identical.  We should also note that at low lags, like we saw in the one 

mode feedback, the 𝑚1 and 𝑚2 correlations are small but positive.  The cross correlations when 

adding a second feedback will tell us more about how the zonal wind and the eddy momentum 

flux are related across two modes.  In Fig. 10, we see the cross correlations for 6 different pairs 

of the two modes of 𝑢 and 𝑚 (𝑢1𝑢2, 𝑢2𝑢1,𝑚1𝑢1,𝑚1𝑢2,𝑚2𝑢1,𝑚2𝑢2).  Note here that 𝑢1𝑢2 

and 𝑢2𝑢1 are exactly opposite.  From here on, we will only show 𝑢1𝑢2 for simplicity.  These are 

the 6 pairs and corresponding correlations that we will be most interested in.  First, we will 

discuss the cross correlations between 𝑚1𝑢1 and 𝑚2𝑢2.  The cross correlations of these two 

plots are nearly identical.  The negative lags in this case show 𝑚1 leading 𝑢1 and the positive 

Figure 10. Lagged Correlation analysis of Synthetic Data with two mode feedback. A) Cross correlation of u1u2 B) 
cross correlation of u2u1 C) Cross correlation of m1u1 D) Cross correlation of m1u2 E) cross correlation of m2u1 

F) Cross correlation of m2u2. 
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lags show when 𝑢1 leads 𝑚1.  They show large positive correlations at short negative lags, 

which corresponds to the eddy momentum flux leading the zonal wind (Lorenz & Hartmann, 

2001).  However, the positive lags differ a bit from what we see in Lorenz and Hartmann (2001).  

We have small positive correlations at extremely short lags, followed by prolonged small 

negative correlations at higher lags.  This would signify a feedback because we have nonzero 

correlations at large positive lags (7-21 days) for these cross correlations.  But 𝑚1𝑢1 and 𝑚2𝑢2 

are not the only cross correlations we are interested in as we can look at the cross correlations of 

one mode of 𝑢 and the second mode of 𝑚 and vice versa.  We will focus on large positive lags 

(7-21 days) where saw the nonzero correlations	𝑚1𝑢1 in and 𝑚2𝑢2.  In 𝑚1𝑢2 we see positive 

correlations that decrease from lag = 0 to about lag = 20.  In 𝑚2𝑢1, we have negative 

correlations over the same lags.  The fact that these correlations have opposite signs means that 

they likely work to cancel each other out to some degree.  The 𝑚2𝑢1 negative correlations at 

long lags are slightly large in magnitude than the 𝑚1𝑢2 positive correlations. We can identify 

the feedbacks in the plots quite clearly and we can now look to quantify the feedback parameters.  

The feedback parameters we chose are shown in Table 1 and we hope to be able to accurately 

back them out in the next section. 

 

3.1.2 Backing out Feedback Parameters 
	

We see the effects of the feedbacks that we imposed on the data, but we can also now 

attempt to back out the feedback parameter for each pair.  We can back out the feedback 

parameter in the one feedback case with a simple division of the covariances of 𝑢 and 𝑚 in the 

equation shown here.  

𝑎 = 	 KLP(a)
KLP(5)

                                                  Equation 10 
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where 𝑎 is the feedback parameter, 𝑐𝑜𝑣(𝑚) is the covariance of 𝑚 and 𝑐𝑜𝑣(𝑢) is the covariance 

of 𝑢.  This will give feedback parameters for each time lag, we can average over the time lags to 

get one value for the feedback.   

Backing out the feedbacks in the two-mode feedback case is a little more complex.  Eq. 3 

shows that there will be 4 different feedback parameters in a two-mode feedback.  If you expand 

Eq. 3, there will be a 2x2 matrix of feedback values, as seen in Table 1.  Table 2 shows what the 

values of the imposed feedback parameters were when we created the dataset with the two-mode 

feedback.   

𝑐𝑜𝑣(𝑢1𝑢1) 𝑐𝑜𝑣(𝑢2𝑢1)
𝑐𝑜𝑣(𝑢1𝑢2) 𝑐𝑜𝑣(𝑢2𝑢2)

∗
𝑎33
𝑎30 = 	

𝑐𝑜𝑣(𝑚1𝑢1)
𝑐𝑜𝑣(𝑚1𝑢2)

                            Equation 11 

𝑐𝑜𝑣(𝑢1𝑢1) 𝑐𝑜𝑣(𝑢2𝑢1)
𝑐𝑜𝑣(𝑢1𝑢2) 𝑐𝑜𝑣(𝑢2𝑢2)

∗
𝑎03
𝑎00 = 	

𝑐𝑜𝑣(𝑚2𝑢1)
𝑐𝑜𝑣(𝑚2𝑢2)

                            Equation 12	

 

The reason we have two sets of equations above is to emphasize the importance of the 

coupling vs uncoupling.  We can see how using these two equations couples the two modes.  We 

use Eqs. 11 and 12 to solve for the 𝑎 terms, or feedback parameters in this equation.  Like we did 

in Eq. 10 for solving the one mode feedback, we use the auto covariances of 𝑢 along with the 

cross covariances of 𝑢 and 𝑚 to solve for each of the 4 feedback parameters.  We should note 

here in the feedback calculation, we take the mean of the feedback parameters over the time lags 

of 10 to 20 days.  We choose these values because we want to avoid the short-term feedback 

effects while also avoiding the really long lags (20+) where the damping takes over.   

In Table 2, we see the actual feedback parameters that we imposed along with the 

feedback parameters that we backed out using Eqs. 11 and 12.  We found that using our 

equations to back out the feedback parameters, we were able to very closely duplicate the 

feedback parameter that we used in the generation of the dataset.  We hope to use this ability to 
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find the feedback parameters in the reanalysis data.   

 

 

3.2 ERA-Interim Data 
	

 The synthetic dataset gives us an easy and simple way to control the feedbacks and see 

how the feedback parameters affect the zonal mean wind and the eddy momentum flux while 

gaining significant insight about the changes in variability between the no feedback and the 

feedback cases.  Now, we will attempt to reproduce our analysis of the synthetic data with ERA-

Interim data.  Before diving into some seasonal analysis, we will first work with all our data as a 

one full dataset (From January 1 1979 to December 31 2017).  Once we see that our analysis 

works for the full dataset, we can break it down further into seasons to identify more specific 

variability changes.  If we solely look at the full dataset, the feedbacks may not show up as 

clearly as they would in each season.  If we have a positive feedback in one season and a 

negative feedback in a different season, those may cancel out and appear as no feedback in the 

full data.  But, using the full data first will give us a general understanding of how the feedbacks 

show up in correlations and if we can quantify them using our method from the previous section. 

 a11 a12 a21 a22 

Imposed Feedbacks 0.0417 0.0833 -0.0833 0 

Backed out Feedbacks 0.0404 0.083 -0.0871 -0.0141 

Table 2. Imposed and Backed out Feedback Parameters. 
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The first thing that we can do with our full reanalysis data is plot both EOF 1 and EOF 2 

in the same manner that we did with the model data and synthetic data. However, for the 

reanalysis data, we will split the data into hemispheres because as we mentioned earlier, it tends 

to be easier to see the results in the Southern Hemisphere.  We can then further break this down 

into seasons.  In Fig. 11, we show EOF1 and EOF2 for the full ERA-Interim data to get a sense 

for the orientation and shape of the EOFs before we begin analyzing the seasonal data.  The 

center of the Southern Hemisphere jet is between 40°S and 60°S and peaks at about 50°S which 

is shown in Fig. 5 and also corroborated here in Fig. 11.  EOF 1 shows peaks in the variance to 

the north and south of the jet center while EOF 2 shows the peak variance right near the center of 

the jet. The eigenspectrum shows that EOF 1 of the Southern Hemisphere explains nearly 42% of 

the variance while EOF 2 explains about 22% in the reanalysis data.  In the future, we could 

apply all of the steps we took to look at the Southern Hemisphere and simply change them to 

Figure 11. Full ERA-Interim EOF Analysis showing a) EOF1 b) EOF2 and c) the Eigenspectrum which 
shows how much variance is explained. 
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look at Northern Hemisphere.  We could get some insight into the jet behavior in the Northern 

Hemisphere as we did in the Southern Hemisphere, but for now, the focus is solely on the 

Southern Hemisphere.  Now that we have a good understanding of the EOF structure in the 

zonal-mean wind, we can now dive deeper into how the zonal mean wind and eddy momentum 

flux interact and how they affect the variability in the jet stream. 

 

3.2.1 Going from Principal Components to Correlations 
	

 There is a conversion that takes place to get from the principal components that we get 

from the EOF analysis to ultimately get the auto and cross correlations.  In Section 2.4.4, we step 

through how we get the principal components for 𝑢 and 𝑚.  Once we have the PCs, we calculate 

the power spectrum of the data.  We can do this using each combination of 𝑢 and 𝑚 for both 

modes.  Once we have the power spectra, we can convert to covariance.  To see how this is done, 

see the Appendix.  There is a simple conversion from covariance to correlation that leaves us 

with the necessary correlations for analysis.  

 

3.2.2 Lagged Correlation Analysis 
	

We will first look at the full dataset to introduce and analyze the correlations.  The 

correlations we will focus on are shown in Fig. 12 and there is a lot to investigate here.  We 

notice in Figs. 12a and 12b how the 𝑢1 and 𝑢2 auto correlations look similar to the auto 

correlations we saw in the synthetic data.  The 𝑢1 and 𝑢2 correlations approach zero near lag = 

±30 days.  How these auto-correlations and ultimately the persistence of u1 and u2 change with 

feedbacks vs no feedbacks will be discussed later.    
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If we look at Fig. 12c correlations, we see positive correlations at large positive lags for 

𝑢1𝑢2. The positive correlations at positive lags in 𝑢1𝑢2 and negative correlations at negative 

lags implies a propagation of the zonal mean zonal wind. The implication here of propagation 

paired with the orientation of the EOFs shows a poleward propagation. When the cross 

correlation of 𝑢1 and 𝑢2 produces a positive correlation, and knowing that 𝑢1 leads 𝑢2, we can 

deduce the implication of poleward propagation.  We could also look at the correlations of 𝑢2𝑢1 

Figure 12.  ERA-Interim full data lagged correlation analysis. A) Auto correlation of u1 B) Auto correlation of u2 C) 
Cross correlation of u1u2 D) Cross correlation of m1u1 E) Cross correlation of m1u2 F) Cross correlation of m2u1 G) 

Cross Correlation of m2u2. 
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but we see that the correlations are the exact opposite of 𝑢1𝑢2 so there is no need to investigate 

this one individually.  We are simply changing the order of the 𝑢1 and 𝑢2 which only changes 

the sign of the correlations, while leaving the magnitudes identical.  

In Fig. 12d, we notice that the shape and the magnitude of the 𝑚1𝑢1 plot is similar to the 

corresponding plot in Lorenz and Hartmann (2001, see Fig. 5).  In our plot, we see that at long 

positive lags (7-21 days), there is a positive correlation.  We also see that at short positive lags, 

there are negative correlations.  This does not mean there is a negative feedback necessarily at 

short lags, but could be caused by the negative autocorrelations in the eddy momentum flux 

anomalies (Lorenz and Hartmann, 2001).  We will not focus on the nonzero correlations at short 

lags in this study, but it is something that should be investigated further in future research.  

Instead, we will focus on the long-term correlations that effect the low frequency variability of 𝑢.  

In the 𝑚2𝑢2 (Fig. 12g) plot, we see a similar pattern, but the positive correlations at large lags 

are less pronounced and much closer to zero.  However, the negative correlations at short 

positive lags are more negative making this feature more pronounced.  This is one benefit of 

using the two-mode feedback as we are able to pick up on some of these subtle differences.   

We just investigated the cross correlations of 𝑢 and 𝑚 from the same mode, but we can 

gain insight by looking at some other cross correlations of 𝑢 and 𝑚 from opposite modes, like 

𝑚1𝑢2	and 𝑚2𝑢1.  In the 𝑚1𝑢2 plot, we see positive correlations at large positive lags.  The 

positive correlations here mean 𝑢2 leads 𝑚1.  In the 𝑚2𝑢1 plot, we see negative correlations at 

large positive lags.  With negative correlations, the feedback at large positive lags is also 

negative.  For there to be propagation, the feedbacks must have opposite signs.  Depending on 

which one is positive, the propagation will be either poleward or equatorward.  Because we have 

positive a12 and we saw that 𝑢1 leads 𝑢2, we can infer poleward propagation.  This is why when 
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we impose our feedbacks in the synthetic data, we use opposite signs for a12 and a21.  We will 

see later that the backed-out feedback parameters are also opposite in sign.   

When we compare the correlations of the full year data and the synthetic data, we see 

similar correlations along with some key differences.  First, the full year data has more noise 

present than the synthetic data, as expected.  However, the noise is not significant enough to 

interrupt our analysis moving forward.  The 𝑢1𝑢2 cross correlations in the full year data and the 

synthetic data are both negative at large negative lags and positive at large positive lags.  As 

mentioned earlier, this implies a propagation of the 𝑢 wind.  We see important difference 

between the full year data and the synthetic data at small lags.  There is a slight change of sign at 

short positive and short negative lags.  For this analysis, we will not investigate this potential low 

frequency feedback, but further insight could be gained by doing so.   

In the cross correlations of 𝑢 and 𝑚, we notice again that there is a potential low 

frequency feedback at low lags.  We will focus on what is happening at greater lags.   At large 

positive lags in the full year data, we see positive correlations for 𝑚1𝑢1, and near zero 

correlations at 𝑚2𝑢2.  This could signify a feedback in the mode one but not one in mode 2.  In 

the synthetic data, we see a negative correlation at large positive lags for both 𝑚1𝑢1 and 𝑚2𝑢2.  

Although the correlations are negative, because they are nonzero in the synthetic data, there is a 

feedback implied in both modes.  When we look at the 𝑚1𝑢2 correlations for the full data, we 

see positive correlations at large positive lags which again signifies that a feedback is present.  

This is in agreement with the synthetic data correlations of 𝑚1𝑢2 and we see similar agreement 

in 𝑚2𝑢1.  We can now work to quantify the feedback parameters since we have proven there are 

feedbacks in the data. 
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3.2.3 Finding feedbacks to solve for zero feedback case 
	

 After analyzing the actual reanalysis lagged correlations, we can use the same technique 

we found using the synthetic data to back out the feedback parameters.  Once we have the 

feedback parameters, we can solve for a case where we take out the feedbacks and see what the 

results would be on not only the correlations, but also the impact the feedbacks have on the 

variability. 

 To back out the feedback parameters, we will be using Eqs. 11 and 12 like we did to 

solve the feedback parameters for the synthetic data.  In Table 3, we see the four backed out 

feedback parameters for the full year of data.  In a later section, we will break down the data into 

seasons.    We note that there is a positive feedback for a11.  We would expect this to be the case 

because previous studies have shown a feedback when looking at only the first mode (Lorenz & 

Hartmann, 2001).  It is important to note the signs of a12 and a21.  The signs of these two 

feedbacks are opposite in sign with a12 having greater magnitude.  When a12 is positive and a21 

is negative, we understand that will produce poleward propagation.  Also, the greatest feedback 

for the full ERA-Interim data is a12 and we will see if this is the case over the other seasons. 

 Once we have the feedbacks quantified, we can remove the effect of the feedbacks on the 

observed lagged covariances and correlations to quantify their effect on the u variability.  Recall 

that to calculate the lagged covariances we first calculated power spectra and then used 

properties of Fourier transforms to get covariances.  The reasons for this choice will become 

 a11 a12 a21 a22 

Full ERA-Interim Feedbacks 0.0432 0.0665 -0.0215 0.0402 

Table 3. Full Data backed-out Feedback Parameters. 
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clear below.  To get the power spectra for the zero-feedback case, we begin by using the original 

principal components from the feedback case and use the feedbacks we just found to create 

principal components for the zero-feedback case.  We use Eqs. 13 and 14 below to create the 

zero feedback principal components for the eddy momentum flux convergence: 

𝑚1 = 𝑚1 − 𝑎11 ∗ 𝑢1 − (𝑎12 ∗ 𝑢2)	                           Equation 13 

𝑚2 = 𝑚2 − 𝑎21 ∗ 𝑢1 − (𝑎22 ∗ 𝑢2)	                           Equation 14 

where	m1 and	m2 are the zero-feedback eddy momentum flux PCs of mode 1 and mode 2, 

respectively. 

 Once we have m1 and	m2 we can calculate the auto power spectra for the eddy 

momentum flux convergence terms.  To calculate the relationships between 𝑢 and 𝑚 under no 

feedbacks, it is easiest to work in Fourier transform space because the inter-variable relationships 

involve algebra instead of calculus.  Let 𝑀3 denote the Fourier transform of 𝑚3.  Note that 𝑀3 is 

a function of frequency (w) and 𝑚3 is a function of time (t).  By definition, the power spectrum 

of 𝑚e is 𝑀e𝑀e∗ where the asterisk stands for the complex conjugate.  To determine the other 

variables from the m calculated above, we first use the momentum budget equation:  

𝑐e
45
46
= 𝑚e −	

5f
9f

                                               Equation 15 

where we add a constant c, which is close to one, to account for the neglect of several small 

terms in the momentum budget and j represents the mode number (ie. EOF1 or EOF2).  

Transforming Eq. 15 to Fourier space, we get: 

𝑖𝑐e𝜔𝑈e +	
jf
9f
= 𝑀e                                           Equation 16 

where 𝑖 is imaginary and 𝜔 is frequency and we use the fact that the Fourier transform of the 

time derivative of u is 𝑖𝜔𝑈.  Multiplying the above equation by U* and rearranging: 
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3
9f
+ 𝑖𝑐e𝜔 =

kfjf
∗

jfjf
∗                                           Equation 17 

 

 where, by definition 𝑀e𝑈e∗ us the 𝑀e and  𝑈e cross spectrum and 𝑈e𝑈e∗ is the 𝑈e power spectrum.  

Looking at the ratio of  𝑀e𝑈e∗ to  𝑈e𝑈e∗  (not shown), we do in fact see that the real part is a 

constant and the imaginary part increases linearly with frequency just as predicted from Eq. 17.  

This relationship is the most robust at low frequencies probably because U variability is very 

weak at high frequencies.  A similar equation results from multiplying Eq. 16 by M*: 

3
9f
+ 𝑖𝑐e𝜔 =

kfkf
∗

jfkf
∗                                        Equation 18 

This equation has the same left-hand side as Eq. 17.   The above discussion suggests that the 

constants t and c can be determined from the ratio of 𝑀e𝑈e∗ to 𝑈e𝑈e∗ or 𝑀e𝑀e∗ to 𝑈e𝑀e∗ at low 

frequencies.  Here we use both by averaging the right-hand sides together and then defining 1/t 

and c as that which minimize the squared error in two equations over frequencies less than 0.05 

𝑑𝑎𝑦23.      

 To find the m and u with no feedback we assume the constants c and t are unchanged and 

therefore Eq. 16 still holds.  Multiplying by 𝑀l
∗, we find the relationship between the M and U 

cross spectrum with no feedback:  

𝑈e𝑀l
∗ = kfkm

∗

C
nf
opKfq

                                               Equation 19 

where j and k are both a mode (ie. EOF1 or EOF2).  They might be the same mode, but we are 

also looking at cross mode relationships so j and k could be different modes.  Similarly, 

multiplying each side of Eq. 16 by the conjugate of itself gives: 
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𝑈e𝑀l
∗ = kfkm

∗

C
nf
rstfu

C
nm
rstmu

                                               Equation 20 

Using these 2 equations we can calculate all combinations of the U and M and U and U cross and 

power spectra from the M cross and power spectra.  We then use a Fourier transform to convert 

these calculated spectra to cross covariances and correlations as discussed previously. 

 

3.2.4 Feedback impact on Variability 
	

 With one case of actual full reanalysis data and one case with the feedbacks removed, we 

can use some simple statistics to see what affect the feedbacks have on the variability of the 

system, especially the effects on the zonal wind and eddy momentum flux.  We can solve for 

how much of the actual variance is contained in the no feedback case by taking the covariance at 

lag = 0 of the no feedback 𝑈 and divide by the actual case.   

It should be noted that we will take the 30-day running mean of the lagged covariances 

due to the timescale of the annular mode.  The annular mode is typically defined on monthly 

time scales, therefore, it is most relevant to compare the effect of the feedbacks on the variance 

at monthly time scales. The variance of the monthly-mean can be calculated from the 6-hourly 

auto covariance as follows. Let 𝑝(𝑡) be a time series and 𝑐(𝑠) be the auto covariance of 𝑝 at lag 

𝑠: 

𝑐 𝑠 = 3
w

𝑝 𝑡 + 𝑠 𝑝(𝑡)w
6x3                                       Equation 21 

where T is the number of times in the record.  Define 𝑝 to be the 2n+1 running mean of p: 

𝑝(𝑡) = 3
0Zo3

𝑝 𝑡 + 𝑗exZ
px2Z                                        Equation 22 

The auto covariance of 𝑝 after distributing the sums is: 
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𝑐(𝑠) = 3
w(0Zo3)D

𝑝(𝑡 + 𝑗)𝑝(𝑡 + 𝑠 + 𝑘)Z
ex2Z

Z
lx2Z

w
6x3                  Equation 23 

Switching the order of the sums so that the 𝑡 sum is performed first and using the definition of 

auto covariance (i.e. 𝑐(𝑠)), we get: 

𝑐(𝑠) = 3
(0Zo3)D

𝑐(𝑠 + 𝑘 − 𝑗)Z
ex2Z

Z
lx2Z                        Equation 24 

Let 𝑙 = 𝑘 − 𝑗. Counting the number of times 𝑐(𝑠 + 𝑙) is repeatedly summed for each value of 𝑙 

finally leads to 

𝑐(𝑠) = 3
(0Zo3)D

(2𝑛 + 1 − 𝑙 )𝑐(𝑠 + 𝑙)0Z
{x20Z                     Equation 25 

Using this equation for lag 0 (i.e. 𝑠 = 0), we can compute the variance of the 2𝑛 + 1 running-

mean of 𝑝 from the auto covariance of the 6 hourly 𝑝. To estimate the change in the monthly 

mean variance we choose 𝑛 to be 60, which translates to a thirty day plus 6 hour running mean.  

For EOF 1, the change of variance in the 30-day running mean case (which we will use 

from here on out), the no feedback case accounts for 56% of the feedback in the actual case.  

This is more easily understood by saying that the removed feedbacks account for 44% of the 

variance.  For EOF 2, the feedbacks account for about 36%.  As we see in EOF 1, the feedbacks 

account for a large amount of variance and if we break the full data into seasons, we can see if 

the feedbacks have more of an effect in certain seasons. The analysis up until now has focused 

on the full ERA-Interim data.  We now have an understanding for what the full year EOFs and 

correlations look like.  We also stepped through how to calculate the change of variance, using 

values from the full ERA-Interim data.  Going through these steps gives us an idea of the 

features to look for in the analysis and shows us how to calculate the change of variance.  In the 
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next section, we will look at our data in 4 different seasons (DJF, MAM, JJA, SON) to assess the 

seasonality of the feedbacks. 

 

3.2.5 Seasonal Analysis  
	

 Before we 

dive into the 

lagged 

correlation 

analysis of the 

individual 

seasons, we 

should take a 

quick look at the 

plot of EOFs for 

each of the 

seasons to make 

sure they agree 

with our understanding of EOF analysis since we will be use the PCs of the EOFs in our 

analysis.  In Fig. 13, we see the plots of both EOF 1 and EOF 2, along with the eigenspectrum 

for each season of our ERA-interim data.  We note that EOF1 shows the leading mode of 

variability to be the north-south fluctuation of the jet when pairing the orientation of the EOFs in 

Fig. 13 to the mean state (Fig. 5, also Fig. 14).  We see that in Fig. 13a, there are maximum 

values poleward of the center of the jet and negative values equatorward of the jet, emphasizing 

Figure 13. ERA-Interim EOF analysis divided into seasons showing a) EOF1 b) EOF2 and c) the 
Eigenspectrum. 
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the fact that EOF 1 explains the most variance in the north-south variability of the jet.  EOF2 

shows the second mode of variability which is the strengthening and sharpening of the jet.  We 

see this with maximum values in Fig. 13b near the center of the jet and minimum values on both 

the poleward and equatorward side of the jet center.  In Fig. 13c, the eigenspectrum shows the 

percent variance explained by each mode.  We see clearly that EOF1 explains the most variance 

and explains about twice as much variance as EOF2.  After EOF2, the percent variance 

explained gets really small and we will ignore these modes for now.   

An interesting 

side point to note here 

is how well in 

agreement EOF1 and 

EOF2 are.  If we look 

at the zonal wind 

atmospheric cross 

sections, we will see 

that there tends to be 

large variance in the 

shape and strength of 

the jet from season to 

season or even month 

to month.  We see the 

cross sections of 

monthly mean zonally 
Figure 14. Fig.1 from Hartmann and Lo (1998) showing the monthly mean zonally 
average zonal wind from 1985-1994 with a contour interval of 5 𝑚𝑠23.  The zero 
and negative contours are dashed and the red dashed line denotes the 50°S center 

of jet. 
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average zonal wind in Fig. 14 which is from Hartmann and Lo (1998).  They take the monthly 

mean from 1985-1994 and plot the zonally average zonal wind in a latitude vs pressure plot.  We 

see how much variation there is from season to season, especially in the upper levels and where 

the jet strength peaks.  However, the EOF analysis does not show much seasonal variability even 

though we see how much variation is in the month to month plots shown here (Hartmann & Lo, 

1998).  However, we added a dashed red line to show the center of the midlatitude jet and the 

location of the midlatitude jet is remarkably consistent and the strength is fairly consistent as 

well.  Also, because the midlatitude jet dominates here at lower levels, the EOF analysis that we 

did picks up on the midlatitude jet variability and shows great seasonal consistency. 

For each season, we will also attempt to go through the same process laid out above with 

the exception that we will also add an uncoupled case to emphasize the importance of a coupled 

feedback.   

3.2.5.1 Lagged Correlation Analysis (JJA)	 
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 The previous steps included work with a full set of our data but now we will work with 

the seasonal data.  The first season we will analyze is the Southern Hemisphere winter of June-

July-August (JJA) because the results are more well defined and explaining them first will 

provide a general understanding of the seasonal analysis for the rest of the seasons.  Table 4 

shows all of the feedback parameters for each of the seasons in our analysis.  

 In Fig. 15, we see correlations similar to the ones we saw for the full data, but there are 

some slight differences.  In the JJA, we can note a couple of important features.  In Fig. 15a, we 

Figure 15. Lagged Correlation analysis for JJA. A) cross correlation of u1u2 B) Cross correlation of m1u1 C) Cross 
correlation of m1u2 D) Cross correlation of m2u1 E) Cross correlation of m2u2. Change of Variance for 30-Day 

running mean also shown for both modes 



	 52 

see the cross correlation of 𝑢1 and 𝑢2.  We mentioned earlier that the positive correlations at 

long positive lags signifies a poleward propagation of the zonal wind.  Also, the structure of 

EOF1 and EOF2 emphasize this poleward propagation in	𝑢1 and 𝑢2.  It means that positive 

EOF2 leads to positive EOF1, which in Fig. 13 denotes a poleward shift from positive EOF2 

around 50°S to positive EOF1 around 60°S.  In the cross correlations of the u and m terms of 

different modes, we note some nonzero correlations at long lags.  While the correlations at long 

lags in m1u1 and m2u2 may appear to be small, they are statistically significant and provide 

Figure 16. JJA Lagged Correlation analysis for actual (blue) and no feedback case (red). A) Auto correlation of U1 B) Auto 
correlation of U2 C) Cross correlation of U1U2 D) Cross Correlation of M1U1 E) Cross correlation of M1U2 F) Cross 

correlation of M2U1 G) Cross Correlation of M2U2. Change of Variance for 30-Day running mean also shown for both modes. 
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information about the complex nature of these feedbacks.  We also see positive correlations of 

m1u2 at long positive lags which are relatively high compared to the other cross correlations of u 

and m.  Interestingly, the cross correlations for m2u1 are slightly negative.  The fact that m1u2 

and m2u1 are opposite in sign is also a sign of poleward propagation.  If the feedback parameters 

of those two relationships are opposite in sign, we can denote poleward propagation.  Now that 

we have a general understanding of the actual correlations for JJA, we can compare the actual  

 case to the no feedback case. 

Fig. 16 shows the actual JJA (blue) and the case where we have removed the feedbacks 

(red).  We can easily compare the difference in correlations due to feedbacks using this figure.  

In Figs. 16a and 16b, we note how the persistence in zonal mean changes when the feedbacks are 

removed.  The correlations in the no feedback case drop lower than the actual case which we 

would expect because by removing the feedbacks, we are reducing the memory in zonal mean 

for both modes because a11 and a22 are positive.  We can attribute this change in persistence 

directly to the feedbacks as those are the only difference between the two plots of data.  The 

𝑈1𝑈2 is near zero for long positive lags when the feedbacks are removed.  The difference at 

 a11 a12 a21 a22 

DJF Feedbacks 0.0291 0.0873 -0.0396 0.0076 

MAM Feedbacks 0.0324 0.1153 -0.0243 0.0593 

JJA Feedbacks 0.045 0.1138 -0.0228 0.0782 

SON Feedbacks 0.0665 0.1156 -0.0383 0.0222 

Table 4. Feedback Parameters in 𝑑𝑎𝑦𝑠23  for ERA-Interim Seasonal Analysis. 
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long positive lags between the actual and no feedback case is the largest amongst all of the cross 

correlations for JJA.  This would signify that the feedbacks play an important role on the 

propagation of the zonal mean zonal wind.  In Fig. 16d, we see the	𝑀1𝑈1 correlation which is 

initially small but positive at larger lags become nearly zero or even slightly negative at those 

same lags.  Again, as we noted in our synthetic data, by removing the feedbacks, the correlations 

at long positive lags should be at or near zero because M forces U but not the other way around 

in the absence of feedbacks.  In figure 16g, the 𝑀2𝑈2 correlation is also lower (more negative) 

in the no feedback case and stays slightly negative until about lag = 10days.  Figure 16e shows a 

fairly significant difference in the actual and no feedback.  The actual correlation for JJA 𝑀1𝑈2 

shows the largest positive correlation across the four combinations of zonal mean wind and eddy 

momentum flux cross correlations for both modes.  The correlation at lag = 7 days is 0.1 or 

slightly greater which is much higher than the other cross correlations at that point.  Also, it stays 

positive until about lag = 21 days showing significant persistence of this feedback.  This 

correlation signifies that EOF2 of u leads to eddies that force EOF1.  When the feedback is 

removed, the correlation drops quickly to zero after being slightly positive at lag =7 days.  The 

difference between the actual case and the no feedback case is the greatest at the lags (7-21days) 

we are focusing on to identify and quantify feedbacks.  This is in agreement with the highest 

feedback parameter for JJA which is a12 = 0.1138 𝑑𝑎𝑦23.  In Fig. 16f, we see the 𝑀2𝑈1 

correlation at large lags is slightly negative nearly identical in the actual data compared to the no 

feedback case.  We see the feedback parameter for a21 in JJA is -0.0228	𝑑𝑎𝑦−1 which is very 

small compared to a12.  While the feedback parameters line up with what we see in the plots, we 

cannot make too many conclusions about the strength and the exact effect between the different 

relationships.  Due to the complex nature of the system, the net effect of a large a12 is not 
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necessarily intuitive on the coupled EOF1/EOF2, therefore below we must explicitly calculate 

the effect of these feedback parameters on the u variability in order to understand how they affect 

the variance and the persistence.  

In Fig. 16, we also show the change in variance for EOF 1 and EOF 2 between the actual 

reanalysis data and the no feedback case.  The change of variance calculation divides the 

covariance of the no feedback case by the covariance of the actual case at lag = 0.  If the change 

in variance is below 1, the feedbacks add, or account for, variance and if the variance is above 1, 

Figure 17. JJA Lagged Correlation analysis for actual coupled (blue), coupled no feedback case (red) and uncoupled no feedback 
case (yellow). A) Auto correlation of U1 B) Auto correlation of U2 C) Cross correlation of U1U2 D) Cross Correlation of M1U1 

E) Cross correlation of M1U2 F) Cross correlation of M2U1 G) Cross Correlation of M2U2.Change of Variance for 30-day 
running mean also shown for both modes. 
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then the feedbacks reduce the variance.  We see that the change in variance for 30-day running 

mean of EOF 1 is 0.497, which means that the feedbacks for mode 1 account for about 50% 

variance.  For EOF 2, the change in variance is 0.452, which means that the feedbacks add about 

55% variance.  These numbers are significant and emphasize the importance of identifying and 

quantifying these feedbacks.  The feedbacks account for a significant portion of the variance in 

the zonal mean zonal wind and by better understanding and quantifying these feedback 

parameters, we should be able to better understand the variability in the jet and where it comes 

from.  

As we mentioned earlier, past studies only looked at one mode of the variability without 

coupling.  Recall that when we say coupled, we mean that EOF1 and EOF2 interact and 

uncoupled means they are assumed to be completely independent.  To investigate the importance 

of using two coupled modes of variability, we decided to do the exact same analysis, except we 

remove the coupling feedbacks (set a12 and a21 to zero, see Appendix for more) and see how the 

lagged correlation analysis and the change in variance are affected.  In Fig. 17, we take a look at 

how the JJA plots compare when we only use 1 mode and ultimately uncouple the data across 

the modes.  Fig. 17 shows all of our JJA plots together where we have the actual case (blue), the 

no feedback coupled case (red), and the no feedback uncoupled case (yellow) for easy 

comparison.  In Figs. 17a and 17b, we see a reduced effect of removing the feedbacks when the 

system is uncoupled on persistence.  The persistence of both 𝑈1 and 𝑈2 is less reduced when the 

feedbacks are uncoupled.  However, the no feedback uncoupled case has higher persistence than 

the no feedback coupled case which means there is some feedback occurring in the uncoupled 

case that should not be.  The sign of this feedback matters for persistence.  Again, if we remove 

the feedbacks in a coupled and uncoupled system, we would expect the resulting correlations 
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would be almost identical but they are not.  This emphasizes that something else is going on in 

an uncoupled system that we do not quite understand and is reason for why it is important to use 

a coupled feedback system.  We see a big change in the 𝑈1𝑈2 correlation in figure 17c between 

the two no feedback cases.  In the coupled no feedback case, the correlations become nearly zero 

at long positive lags.  However, in the no feedback uncoupled case, the correlations are almost 

the same as the actual coupled correlations.  This does not make sense intuitively because as we 

mentioned earlier, the 𝑈1𝑈2 positive correlations at these long lags signifies poleward 

propagation.  In the coupled no feedback case, these positive correlations disappear and it would 

stand to reason that the poleward propagation of the zonal mean zonal wind is caused or 

influenced by these feedbacks.  But the uncoupled no feedback case positive correlations seem to 

show that this poleward propagation still persists even when the feedbacks, which are supposedly 

a driver for this poleward propagation (Feldstein S. B., 1998), are removed.  Again, this shows 

how important the coupling is when trying to diagnose these feedbacks.  In the U and M, cross 

correlations, we find that the uncoupled no feedback case tends to fall in between the correlations 

of the actual and the no feedback coupled case.  What this means is that the uncoupled case does 

not show as drastic of an effect of the removal of feedbacks as the coupled case.  There is still a 

slight shift towards lower magnitude correlations at long positive lags in the 𝑀1𝑈1 and 𝑀2𝑈2 

no feedback uncoupled correlations compared the coupled no feedback case.  The change 

between the actual case and the no feedback case for 𝑀1𝑈2 and 𝑀2𝑈1 when removing the 

coupling is very little.  We set the feedbacks a12 and a21 to be zero which are both key in 

coupling these two correlations and recalculated a11 and a22 (see Appendix).  The correlations 

are slightly reduced from the actual to the no feedback uncoupled case in Fig. 17e at long lags, 

but the correlations at long lags in Fig. 17f are nearly identical to the correlations in the actual 
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case.  As we did when comparing the no feedback case to the actual in the previous plot, we can 

also calculate the change in variance for the uncoupled case and compare that to the coupled 

case.   We find that when we remove the coupling, the feedbacks account for less variance in 

EOF 1 and EOF2, at 33% and 46% respectively.  This explains why we are seeing less change in 

the correlations between the no feedback and the actual case.  Also, the feedback parameters 

(a11 = 0.0317 𝑑𝑎𝑦23 and a22 = 0.0556 𝑑𝑎𝑦23, from Table 5) that we use when uncoupling the 

data are lower than the actual feedback parameters (a11 = 0.0545 day23 and a22 = 0.0782 

day23), from Table 4).  The feedbacks are significantly lower when using the uncoupled method 

compared to the actual data.  Also, the differences in the correlations between the no feedback 

case and the actual case for the uncoupled case are less than the changes in  

 

correlations for the actual data and the no feedback coupled case.  It is important to use the two 

modes of variability and the coupling when trying to identify and quantify these feedbacks  

 a11 a12 a21 a22 

DJF Feedbacks Uncoupled 0.0189 0 0 -0.0304 

MAM Feedbacks Uncoupled -0.0159 0 0 0.0299 

JJA Feedbacks Uncoupled 0.0317 0 0 0.0556 

SON Feedbacks Uncoupled 0.0449 0 0 -0.0431 

Table 5. Feedback parameters for the Uncoupled case in 𝑑𝑎𝑦23. 
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between the eddy forcing and the zonal-mean zonal wind.  Now that we have seen how the 

feedbacks and correlations 

change between the full 

data and the JJA, we can 

continue the analysis for the 

rest of the seasons. 

 

3.2.5.2 Seasonal Summary 
	

 In this section I will 

summarize some of the 

main points across the rest 

of the seasonal analysis.  

The correlation plots for the 

rest of the seasons can be found in the Appendix for those who want to look at each season more 

in-depth as we did for JJA.  We will first look at the EOF1 of zonal wind persistence at lag = 10 

days in Fig. 18.  The reason we choose 10 days is because it is in the range of our longer lags that 

we have been investigating throughout this paper.  We find that for EOF1, the persistence of 

zonal wind is lower in both the coupled and uncoupled no feedback cases except for the 

uncoupled MAM.  This shows that there is an effect of these feedbacks on the persistence of the 

zonal wind.  The feedbacks act to increase (decrease) the persistence of zonal wind if a11 and 

a22 are positive (negative) because as we saw in the synthetic data, the zonal wind now has an 

effect on the eddy momentum flux convergence.  When there is no feedback presence, the eddy 

momentum flux convergence solely forces zonal wind and zonal wind does not force eddy 

Figure 18. EOF1 Persistence at lag = 10 days for all seasons for the a) actual 
coupled case (blue) b) the coupled no feedback case (red) and c) the uncoupled no 

feedback case. 
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momentum flux 

convergence.  For there to 

be a feedback, both must 

force each other and we 

see that to be the case in 

the actual data.   

We see a similar 

tendency in Fig. 19 for 

EOF2 where the 

persistence in the no 

feedback cases is mostly 

reduced compared to the 

actual case.  There are a couple of exceptions here in the uncoupled case (DJF, SON) and one in 

the coupled case (DJF) where 

the persistence actually 

increases when the feedbacks 

are removed.  Again, we see 

these feedbacks having a 

significant impact on the zonal 

wind and they also play an 

important role on the change in 

variance which we will get to 

shortly. 

Figure 19. EOF2 Persistence at lag = 10 days for all seasons for the a) actual coupled 
case (blue) b) the coupled no feedback case (red) and c) the uncoupled no feedback 

case. 

Figure 20. U1 and U2 coupling at lag = 10 days for all seasons for the a) 
actual coupled case (blue) b) the coupled no feedback case (red) and c) the 

uncoupled no feedback case. 
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In Fig. 20, we do the same thing for the 𝑈1𝑈2 coupling.  We see that with the exception 

of SON in the uncoupled case, removing the feedbacks reduces the correlations.  We note again 

that 𝑈1𝑈2 signifies the poleward propagation of the jet and so the positive correlations for the no 

feedback uncoupled are odd.  The no feedback uncoupled case is almost unchanged from the 

actual case which shows that the coupling between modes must be assumed in order to account 

for the correlations between U1 and U2.  Because we can attribute some of the poleward 

propagation to the eddy-zonal flow feedbacks, we would not expect to see positive correlations 

for a no feedback case.  Now there are some negative correlations for the coupled no feedback 

case, but they are much closer to zero as we would expect.  We expect the positive correlations 

of 𝑈1𝑈2 to be zero in the no feedback cases so when we see positive correlations for uncoupled 

case, it appears there is poleward propagation in the absence of feedbacks which is not expected 

and shows us that we 

should be using the 

coupling. 

The final piece of 

analysis is the change of 

variance throughout the 

different seasons.  We can 

see in Fig. 21 the different 

changes in variance for 

each mode across the 

seasons for both 

uncoupled and coupled.  

Figure 21. Monthly mean change in variance for) EOF1 (top) and EOF2 (bottom) 
for both coupled (blue) and uncoupled case (red). 
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We note that in EOF1, the change of variance for the coupled case ranges from about 0.5~0.8 

which means that the feedbacks account for about 20%-50% of the variance.  For EOF2, the 

coupled case changes of variance range from about 0.54~0.95 which means that the feedbacks 

account for about 4%-54% of the variance.  This shows that the feedbacks account for a large 

amount of the zonal wind variability and varies across the different seasons.  However, if we use 

the uncoupled feedbacks, we see that in DJF, JJA, and SON for EOF1 and MAM and JJA for 

EOF2, the feedbacks account for about 20%-40% of the variance.  However, in the other seasons 

MAM for EOF1 and DJF and SON for EOF2, the feedbacks actually reduce the variance by 

20%-40% which we would not expect and thus emphasizes that we need to use coupled 

feedbacks when analysis the eddy-zonal flow feedback effects on zonal wind variability.	

 

4. Discussion  
 
4.1 Quantifying Feedback Parameters 
 
 The first goal we achieved in this paper was quantifying the feedback parameters. We 

know that our technique for quantifying these parameters is accurate through the use of a 

synthetic dataset.  We were able to reproduce the feedback parameters that we imposed onto the 

dataset.  We knew exactly what the feedbacks were and found the feedbacks to be very close to 

the imposed feedbacks (see Table 2).  We first found the feedback parameters for the entire 

ERA-Interim dataset in Table 3.  We then divided the data into seasons to quantify the seasonal 

feedback parameters.  It is useful to break the data down into seasons because there could be 

significant differences in the feedback parameters from season to season.  We found that as 

expected, the feedback parameters did differ significantly throughout the seasons (see Table 4).  

The a11 feedback parameter was lowest in MAM and highest in JJA.  Recall that a11 is the 
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feedback of PC1 on itself.  The feedback parameter a12 was higher than a11 across all seasons.  

We found that the a21 feedback parameters was the only one that was negative.  Recall that the 

a12 feedback is the effect of PC2 on PC1 and the a21 feedback is PC1 on PC2.  The nature of 

opposite signs for a12 and a21 signify a poleward propagation of the zonal mean zonal wind due 

to the fact that a12 is positive meaning that when PC2 leads to PC1, the feedback is positive 

leads to a poleward shift.  The a22 feedback parameter was lowest in DJF and highest in JJA.  

Recall that a22 is the feedback of PC2 on itself.  Even though the feedback parameters seem 

small in magnitude, their impact can be large on the timescales involved in the annular modes.   

 

 
4.2 Lagged Correlation Analysis 
 
 Through careful analysis of the lagged correlations, we were able to identify and 

visualize the feedbacks.  We were able to identify feedbacks to varying extents throughout the 

different seasons.  We see feedbacks in the form of non-zero correlations and we are focusing on 

the correlations at long positive lags because these lags are not affected by the obvious forcing of 

zonal wind by the eddies due to the momentum budget.  In all seasons, we can identify positive 

correlations in the 𝑀1𝑈1 plots, positive correlations in the 𝑀1𝑈2 plots and negative correlations 

in the 𝑀2𝑈1 plots at long positive lags.  For 𝑀2𝑈2, we see small but positive correlations at 

long positive lags in MAM and JJA.  For DJF and SON, the correlations are much closer to zero 

and may be positive for a few time lags but are also slightly negative at some time lags.  The 

positive correlations are much clearer in MAM and JJA for 𝑀2𝑈2.  We have identified the 

feedbacks present in these two modes of the zonal mean zonal wind and the eddy momentum 

fluxes. 



	 64 

 When comparing the actual case compared to the feedbacks, we see some slight 

differences in the correlations as a result of the feedbacks being removed.  In the correlations of 

𝑈1, when the feedbacks are removed, the correlations drop below the actual case in all seasons 

except for MAM.  For 𝑈2, the correlations when the feedbacks are removed are less than the 

actual case for all seasons except for SON where it looks like the no feedback case and the actual 

case are nearly identical.  For 𝑈1𝑈2, the correlations in the no feedback case quickly approach 

zero at long positive lags for MAM and JJA.  In DJF, the correlations are slightly negative at 

long positive lags and for SON, the correlations are positive at long positive lags.  For 𝑀1𝑈1, 

the no feedback case has a slightly positive correlation for at long positive lags in MAM, JJA, 

and SON while DJF exhibits closer to zero correlation at these lags.  The positive correlations at 

long positive lags shows the feedback that we are trying to identify.  For 𝑀2𝑈2, the no feedback 

slightly reduces the correlations at the long positive lags in all seasons except DJF where the no 

feedback case has nearly identical correlation values at long positive lags.  For 𝑀1𝑈2, the no 

feedback case reduces the correlations as expected for all seasons.  For 𝑀2𝑈1, the no feedback 

case increases (makes it less negative, even slightly positive) the correlations at long positive 

lags.  It appears that the feedbacks present in these two cases (𝑀1𝑈2 and 𝑀2𝑈1) likely signify 

poleward propagation because they are opposite in sign.  The feedback parameters for a12 are 

positive and the feedback parameters for a21 are negative which bears this out.  Removing the 

feedbacks, in most cases, does what we expect it to which is that it reduces the signal of a 

feedback in the correlations.   

 

4.3 Change in Variance 
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 Since we have two cases of our Reanalysis data (one as is and one with feedbacks 

removed), we can compare a quantify how much affect the feedbacks have on the total 

variability within each season (see Table 6).  We see that in each season, the change in variance 

for 30-day running mean of EOF1 is less than 1 which means the removed feedbacks account for 

a certain percentage (between 20%-51%) of the total variance.  In EOF 2, the change in variance 

for each season is less than 1 which means that the remove feedbacks account for a percentage of 

variance (4%-55%).  The change of variance is important because we are looking to see what 

contribution the feedbacks have on the zonal-mean zonal wind and we find that the change in 

variance caused by feedbacks is rather large and at times, the feedbacks account for about half of 

the zonal wind variability. 

 

 
4.4 Coupled vs. Uncoupled 
 
 One of the main focuses of this study was to emphasize the importance of using multiple 

modes of variability to solve for the feedbacks.  We mentioned earlier than past studies focused 

heavily on just the leading mode of variability and do not account for the coupling potential 

between modes.  Once we completed the analysis for our seasonal ERA-Interim data, we quickly 

 EOF1 EOF2 

DJF 39% increase 4% increase 

MAM 19% increase 40% increase 

JJA 51% increase 55% increase 

SON 45% increase 23% increase 

Table 6. Percent increase in the 30-day running mean variability attributed to feedback parameters for each season 
and each mode. 
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replicated the process to attempt to illustrate the uncoupled results for the same dataset.  We 

simplified the feedback calculation and set the coupling feedbacks (a12 and a21) to zero so that 

the feedbacks would change slightly and become uncoupled.  We found that for nearly all 

seasons, the uncoupled case very closely represented the actual data.  While there were some 

subtle differences in magnitude for the no feedback uncoupled case, the general shapes of the 

correlation plots were similar.  Because the no feedback case here is so close to the actual case, 

we can infer that the uncoupled case is not able to accurately depict the effects of the feedbacks.  

We note that the uncoupled feedback parameters (a11 and a22) also vary in sign from season to 

season much more than the coupled case where the signs for all feedbacks were consistent 

between the different seasons.  For EOF 1 for MAM and EOF 2 for DJF and SON, the change of 

variance is greater than 1 which means that the presence of feedbacks actually serves to reduce 

the variability which does not make much physical sense.  We expect that feedbacks will account 

for a portion of the zonal wind variability which is the case in both modes for the coupled case.  

It is important to make sure that when we are solving for the feedbacks, we are using a coupled 

two-mode feedback method to more accurately depict the effects of the feedbacks on the zonal-

mean zonal wind. 

 
4.5 Future Research 
	

 The scope of this analysis allows for some potential areas of future research that could 

provide for a nice continuation of this analysis.  First off, this analysis was limited to the 

Southern Hemisphere.  The analysis could be extended to the Northern Hemisphere as well.  

Investigating the Northern Hemisphere would allow for a comparison between the two 

hemispheres to see how the feedbacks affect the jets in each hemisphere differently.  Another 
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clear path for future research would be to investigate what is happening at short lags.  We only 

focused on the longer-term feedbacks that we see in the lagged correlation analysis. 

 

5. Conclusions 
	

 In this study, we have presented an analysis of the role of eddy-zonal flow feedback on 

the zonal wind variability through two modes of variability using primarily ERA-Interim 

reanalysis data.  We used a synthetic dataset as a proof of concept of how to accurately back out 

the different feedback parameters.  Once we knew that we could back out the feedback 

parameters, we moved on to ERA-Interim reanalysis and followed the same steps to assess the 

main objectives of this research.  We found that we were able to identify the seasonal feedback 

parameters using a two-mode approach.  We utilized lagged correlation analysis to visually 

identify and represent the feedbacks between the different modes of the zonal-mean zonal wind 

and the eddy momentum flux convergence.  Then, we were able to quantify the seasonal 

feedback parameters using the covariances at time lag = 0.  It is imperative to perform the 

analysis seasonally because there is significant change in the feedback parameters from season to 

season.  Without doing so, the results for the feedback parameters may not give the most 

accurate depiction of the eddy-zonal flow feedback.  Our last step involved taking the feedback 

parameters and creating a dataset that removes the feedbacks to see how much impact the 

feedbacks have on the variability.  With inaccurate feedback parameters, we could not perform 

this crucial step.  We found that the feedbacks significantly affect the variability of the zonal 

wind.  The feedbacks mostly act to increase variability in EOF 1 but they act to reduce the 

variability in EOF 2.  The last step we took was to investigate the importance of the coupled vs. 

uncoupled feedbacks.  We found that the uncoupled case does not account for the feedbacks 
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nearly as well as the coupled case which leads to large variability in the change of variance 

values. 

In summary, we were able to first emphasize the importance of using coupled instead of 

uncoupled feedbacks.  We then identified feedbacks using lagged correlation analysis.  Next, we 

quantified the feedback parameters across both modes of variability.  And finally, we assessed 

the impact of feedbacks on the zonal wind variability.  We found that using coupled feedbacks is 

crucial to understand the full effects of the eddy-zonal flow feedbacks.  The feedbacks can have 

such a large impact on the zonal wind variability, where at times, the feedbacks increase 

variability by greater than 50% for the change of variance of the 30-day running mean.  We 

utilized the first two dominant modes of variability to better understanding of the eddy-zonal 

flow feedbacks and their effect on the zonal wind variability. 
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6. Appendix  
	

6.1 Principal Components à  Power Spectra à Covariance à Correlation  
	

	 To go from Principal Components to correlation via Fourier transforms necessitates some 

careful mathematics to make sure we are not losing any important information.  Earlier in the 

paper, we referenced that once we get the principal components, we can easily convert to 

correlations but there are a few steps in between principal components and correlation.   

 Once we have the principal components, we need to convert the principal components to 

power spectra.  With power spectra in hand, we set up a function of our own that converts to 

covariances. We utilize a Fourier series to do this conversion.  It is a fairly complex step, but the 

important thing to remember is that through the Fourier series, all of the necessary information is 

conserved.   

 Once we have the covariances calculated, we simple convert them into correlations by 

dividing the covariance by the square root of the covariance at lag = 0.  Two examples of the 

equation are shown below: 

𝑐𝑜𝑟𝑟	𝑈1 = 	 KLP(j3)
KLP j3 @	{��x�

                                      Equation 26 

𝑐𝑜𝑟𝑟	𝑈1𝑈2 = 	 KLP(j3j0)
KLP j3 @	{��x�	 KLP j0 @	{��x�

                        Equation 27 

	

6.2 Backing out Tau 
	

 In the ERA-Interim reanalysis, we were also able to back out the t, which is the damping 

timescale.  Just like the we did with the feedback parameters, we used the synthetic dataset to 

show that we could accurately back out t when we imposed t = 8 days.  In the synthetic dataset, 
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we only used one t, but we could have used two different t as t is slightly different between the 

two modes.  The equations we used were: 

t3x	t��(�C�C)t��(�C)
                                                 Equation 28	

t0x	t��(�D�D)t��(�D)
                                          Equation 29	

	

	 Table 5 shows the results for the backed-out t values.  Table 6 also shows the t values for 

the no feedback cases as well.  We can solve the no feedback case the same way using earlier 

equations, except we just use the no feedback corresponding covariances. 

 

 

	

6.3 Initial Coupled à Uncoupled  
	

 To create an uncoupled version of the data to compare with our original results, we had to 

change slightly how we calculated the feedbacks.  Eqs. 11 and 12 show the complex matrix 

equation that we needed to use to solve for each of the 4 feedback parameters.  However, by 

uncoupling the feedbacks, we change our way of calculating the feedbacks and set the coupled 

feedbacks (a12 and a21) to zero. 

 𝜏3 𝜏0 𝜏3 No Feedback 𝜏0	No Feedback 
Full ERA-Interim 7.1371 6.9506 7.2739 7.1101 
DJF 9.3130 9.4314 8.54 8.0529 
MAM 7.1562 7.0686 6.5429 6.1555 
JJA 6.1402 6.0773 5.3881 5.1929 
SON 6.8844 6.8778 6.3132 5.8758 

Table 7. Backed out t values for EOF1 and EOF2 for ERA-Interim Seasonal data and the no feedback 
case 
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𝑎11 = 	 KLP(k3j3)
KLP(j3)

                                           Equation 30 

𝑎22 = 	 KLP(k0j0)
KLP(j0)

                                           Equation 31 

Where the dot simply denotes that these are the uncoupled feedback parameters. 

	

6.4 More Seasonal Correlation Plots  
	

This section will include the rest of the seasonal correlations plots that we did not discuss 

in detail within the paper.  In the paper, we discussed in great detail JJA, and summarized the 

rest, but here we will show DJF, MAM, and SON for completeness.  In each of these figures, the 

plots show three different cases: the actual coupled case (blue), the no feedback coupled case 

(red) and the no feedback uncoupled case (yellow). 
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Figure 22 shows the cross correlations for December-January-February (DJF) which is 

the Southern Hemisphere summer.     	

	

	

	

Figure 22. DJF Lagged Correlation analysis for actual coupled (blue), coupled no feedback case (red) and uncoupled no feedback 
case (yellow). A) Auto correlation of U1 B) Auto correlation of U2 C) Cross correlation of U1U2 D) Cross Correlation of M1U1 E) 
Cross correlation of M1U2 F) Cross correlation of M2U1 G) Cross Correlation of M2U2.Change of Variance also shown for both 

modes. 
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Figure 23 shows the cross correlations for March-April-May (MAM).	

	

 

 

Figure 23. MAM Lagged Correlation analysis for actual coupled (blue), coupled no feedback case (red) and uncoupled no 
feedback case (yellow). A) Auto correlation of U1 B) Auto correlation of U2 C) Cross correlation of U1U2 D) Cross Correlation of 

M1U1 E) Cross correlation of M1U2 F) Cross correlation of M2U1 G) Cross Correlation of M2U2.Change of Variance also 
shown for both modes. 
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 Figure 24 shows the cross correlations for September-October-November (SON).	

 

 

	

Figure 24. SON Lagged Correlation analysis for actual coupled (blue), coupled no feedback case (red) and uncoupled no feedback 
case (yellow). A) Auto correlation of U1 B) Auto correlation of U2 C) Cross correlation of U1U2 D) Cross Correlation of M1U1 E) 
Cross correlation of M1U2 F) Cross correlation of M2U1 G) Cross Correlation of M2U2.Change of Variance also shown for both 

modes. 
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